参考资料:Python Seaborn搞定线型回归图曲线

1、绘图数据准备

依旧使用鸢尾花iris数据集,详细介绍见之前文章。

  1. #导入本帖要用到的库,声明如下:
  2. import matplotlib.pyplot as plt
  3. import numpy as np
  4. import pandas as pd
  5. from pandas import Series,DataFrame
  6. from sklearn import datasets
  7. import seaborn as sns
  8. #导入鸢尾花iris数据集(方法一)
  9. #该方法更有助于理解数据集
  10. iris=datasets.load_iris()
  11. x, y =iris.data,iris.target
  12. y_1 = np.array(['setosa' if i==0 else 'versicolor' if i==1 else 'virginica' for i in y])
  13. pd_iris = pd.DataFrame(np.hstack((x, y_1.reshape(150,1))),columns=['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(cm)','class'])
  14. #astype修改pd_iris中数据类型object为float64
  15. pd_iris['sepal length(cm)']=pd_iris['sepal length(cm)'].astype('float64')
  16. pd_iris['sepal width(cm)']=pd_iris['sepal width(cm)'].astype('float64')
  17. pd_iris['petal length(cm)']=pd_iris['petal length(cm)'].astype('float64')
  18. pd_iris['petal width(cm)']=pd_iris['petal width(cm)'].astype('float64')
  19. #导入鸢尾花iris数据集(方法二)
  20. #该方法有时候会卡巴斯基,所以弃而不用
  21. #import seaborn as sns
  22. #iris_sns = sns.load_dataset("iris")

2、seaborn.regplot

seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci=’ci’, scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, seed=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=True, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker=’o’, scatter_kws=None, line_kws=None, ax=None)

regplot默认参数线型回归图

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)#设置主题,文本大小
  3. g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. color='#000000',#设置marker及线的颜色
  5. marker='*',#设置marker形状
  6. )

image.png

分别设置点和拟合线属性

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. color='#000000',
  5. marker='*',
  6. scatter_kws={'s': 60,'color':'g',},#设置散点属性,参考plt.scatter
  7. line_kws={'linestyle':'--','color':'r'}#设置线属性,参考 plt.p
  8. )

image.png

置信区间(confidence interval)设置

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. color='#000000',
  5. marker='*',
  6. ci=60,#置信区间设置,默认为95%置信区间,越大线周围阴影部分面积越大
  7. )

image.png

拟合线延伸与坐标轴相交

  1. # extend the regression line to the axis limits
  2. plt.figure(dpi=100)
  3. sns.set(style="whitegrid",font_scale=1.2)
  4. g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  5. color='#000000',
  6. marker='*',
  7. truncate=False,#让拟合线与轴相交
  8. )

image.png

拟合离散变量曲线

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. x_discrete=[0 if i=='setosa' else 1 if i=='versicolor' else 2 for i in pd_iris['class']]#
  4. g=sns.regplot(x=x_discrete, y='sepal width(cm)', data=pd_iris,#x此时为离散变量
  5. color='#000000',
  6. marker='*',
  7. )

image.png

多项式回归( polynomial regression)拟合曲线

  1. plt.figure(dpi=110)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.regplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. marker='*',
  5. order=4,#默认为1,越大越弯曲
  6. scatter_kws={'s': 60,'color':'#016392',},#设置散点属性,参考plt.scatter
  7. line_kws={'linestyle':'--','color':'#c72e29'}#设置线属性,参考 plt.plot
  8. )

image.png

3、seaborn.lmplot

seaborn.lmplot(x, y, data, hue=None, col=None, row=None, palette=None, col_wrap=None, height=5, aspect=1, markers=’o’, sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, legend=True, legend_out=True, x_estimator=None, x_bins=None, x_ci=’ci’, scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, seed=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=True, x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None, size=None)seaborn.lmplot结合seaborn.regplot()和FacetGrid,比seaborn.regplot()更灵活,可绘制更个性化的图形。

按变量分类拟合回归线

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. hue='class',
  5. )
  6. g.fig.set_size_inches(10,8)

image.png

散点marker设置

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. hue='class',
  5. markers=['+','^','o'], #设置散点marker
  6. )
  7. g.fig.set_size_inches(10,8)

image.png

散点调色盘

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. hue='class',
  5. markers=['+','^','*'],
  6. scatter_kws={'s':180},
  7. palette=["#01a2d9", "#31A354", "#c72e29"],#调色盘
  8. )
  9. g.fig.set_size_inches(10,8)

image.png

拟合线属性设置

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. hue='class',
  5. markers=['+','^','*'],
  6. scatter_kws={'s':180},
  7. line_kws={'linestyle':'--'},#拟合线属性设置
  8. palette=["#01a2d9", "#31A354", "#c72e29"],
  9. )
  10. g.fig.set_size_inches(10,8)

image.png

绘制分面图

  1. plt.figure(dpi=100)
  2. sns.set(style="whitegrid",font_scale=1.2)
  3. g=sns.lmplot(x='sepal length(cm)', y='sepal width(cm)', data=pd_iris,
  4. col='class',#按class绘制分面图
  5. markers='*',
  6. scatter_kws={'s':150,'color':'#01a2d9'},
  7. line_kws={'linestyle':'--','color':'#c72e29'},#直线属性设置
  8. )
  9. g.fig.set_size_inches(10,8)

image.png