- Bit, Binary digit, codes
- Data type
- unsigned integer
- signed integer
- logical variable
- floating point number
- ASCII code
BIT
- 0 and 1 are binary digit
- BIT stand for Binary Digit :::
Signed Ineger
2’s complement 二补数,补码
- Given n bits, 2’s complement can only represents 2^n numbers, $-2^{n-1} \le x \le 2^{n-1} - 1$
- Make sure, say that -3 + 3 = 0 | 0000 | 0 | | —- | —- | | 0001 | 1 | | 0010 | 2 | | … | … | | 0111 | 7 | | 1000 | -8 | | 1001 | -7 | | … | … | | 1110 | -2 | | 1111 | -1 |
OVERFLOW
the case like -4 + -5 = +7, but not -9
SIGN EXTENSION
Different bits number operate together, which isn’t work.
For example, a 4-bit number plus a 8-bit number. So we should turn a 4-bit number to 8-bit number.Method to turn, which is called SIGN EXTENTION
- if positive, add 0 at the front
- if negative, add 1 at the front
01001100 | 76
11111011 | -5
01000111 | 71
:::
Conversion between Binary and Decimal
Logical Variable
- can be represented by one bit
- BIT VECTOR, a batch of logical variable
Component
- NOT
truth table
x | f(x) |
---|---|
0 | 1 |
1 | 0 |
- OR
truth table
INPUT COMBINATION | ||
---|---|---|
x | y | f(x, y) |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
- AND
truth table
INPUT COMBINATION | ||
---|---|---|
x | y | f(x, y) |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
De Morgan’s Law
:::
- XOR / Exclusive-OR
truth table
INPUT COMBINATION | ||
---|---|---|
x | y | f(x, y) |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
- XNOR / Exclusive -NOR Equivalence
truth table
INPUT COMBINATION | ||
---|---|---|
x | y | f(x, y) |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |