什么是TCP

CP,全称Transfer Control Protocol,中文名为传输控制协议,它工作在OSI的传输层,提供面向连接的可靠传输服务。
TCP的工作主要是建立连接,然后从应用层程序中接收数据并进行传输。TCP采用虚电路连接方式进行工作,在发送数据前它需要在发送方和接收方建立一个连接,数据在发送出去后,发送方会等待接收方给出一个确认性的应答,否则发送方将认为此数据丢失,并重新发送此数据。
TCP报头
TCP报头总长最小为20个字节,其报头结构如下图所示;
比特0 比特15 比特16 比特31

源端口(16) 目的端口(16)
序列号(32)
确认号(32)
TCP偏移量(4) 保留(6) 标志(6) 窗口(16)
校验和(16) 紧急(16)
选项(0或32)
数据(可变)

|

|

|

|

源端口:指定了发送端的端口
目的端口:指定了接受端的端口号
序号:指明了段在即将传输的段序列中的位置
确认号:规定成功收到段的序列号,确认序号包含发送确认的一端所期望收到的下一个序号
TCP偏移量:指定了段头的长度。段头的长度取决与段头选项字段中设置的选项
保留:指定了一个保留字段,以备将来使用
标志:SYN、ACK、PSH、RST、URG、FIN
SYN: 表示同步
ACK: 表示确认
PSH: 表示尽快的将数据送往接收进程
RST: 表示复位连接
URG: 表示紧急指针
FIN: 表示发送方完成数据发送
窗口:指定关于发送端能传输的下一段的大小的指令
校验和:校验和包含TCP段头和数据部分,用来校验段头和数据部分的可靠性
紧急:指明段中包含紧急信息,只有当U R G标志置1时紧急指针才有效
选项:指定了公认的段大小,时间戳,选项字段的末端,以及指定了选项字段的边界选项

TCP工作原理

TCP连接建立:TCP的连接建立过程又称为TCP三次握手。首先发送方主机向接收方主机发起一个建立连接的同步(SYN)请求;接收方主机在收到这个请求后向送方主机回复一个同步/确认(SYN/ACK)应答;发送方主机收到此包后再向接收方主机发送一个确认(ACK),此时TCP连接成功建立;
TCP连接关闭:发送方主机和目的主机建立TCP连接并完成数据传输后,会发送一个将结束标记置1的数据包,以关闭这个TCP连接,并同时释放该连接占用的缓冲区空间; TCP重置:TCP允许在传输的过程中突然中断连接,这称为TCP重置;
TCP数据排序和确认:TCP是一种可靠传输的协议,它在传输的过程中使用序列号和确认号来跟踪数据的接收情况;
TCP重传:在TCP的传输过程中,如果在重传超时时间内没有收到接收方主机对某数据包的确认回复,发送方主机就认为此数据包丢失,并再次发送这个数据包给接收方,这称为TCP重传;
TCP延迟确认:TCP并不总是在接收到数据后立即对其进行确认,它允许主机在接收数据的同时发送自己的确认信息给对方。
TCP数据保护(校验和):TCP是可靠传输的协议,它提供校验和计算来实现数据在传输过程中的完整性。

什么是UDP

UDP协议是英文UserDatagramProtocol的缩写,即用户数据报协议,主要用来支持那些需要在计算机之间传输数据的网络应用。包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。UDP协议从问世至今已经被使用了很多年,虽然其最初的光彩已经被一些类似协议所掩盖,但是即使是在今天,UDP仍然不失为一项非常实用和可行的网络传输层协议。
与我们所熟知的TCP(传输控制协议)协议一样,UDP协议直接位于IP(网际协议)协议的顶层。根据OSI(开放系统互连)参考模型,UDP和TCP都属于传输层协议。
UDP协议的主要作用是将网络数据流量压缩成数据报的形式。一个典型的数据报就是一个二进制数据的传输单位。每一个数据报的前8个字节用来包含报头信息,剩余字节则用来包含具体的传输数据。

什么是RTMP

RTMP协议是一个专门为高效传输视频,音频和数据而设计的协议。它通过建立一个二进制TCP连接或者连接HTTP隧道实现实时的视频和声音传输。
RTMP比传统媒介服务器流出的媒介协议支持更多。它支持可能包含声音,影像和脚本数据从服务器到客户和从客户到服务器多条线路的动态传输。RTMP对声音、影像和脚本数据分别处理。
声音和视频数据被分开地缓冲在服务器中。如果声音数据在声音缓冲器中达到某一极限,所有在缓冲器中的数据将被丢掉,并且最近到达的数据被允许开始收集在缓冲中并被送到各个客户。视频数据被以相似的方式处理,不同是当新的关键帧到达时,缓冲器中数据才被清除。在丢掉旧的帧数据时,如果发现客户端的数据有误,则将新旧两个不同的帧进行拟合。
RTMP对数据给予不同的优先级别。在实时交谈中,声音是最重要的,影像给予低优先级,而脚本数据被给予的优先权介于声音和影像中间。
RTMP协议可以创建多个数据流,但是每个数据流只能有一个方向。使用RTMP可以构建这样的一个系统,客户端可以同时与RTMP服务器和应用服务器进行交互,使得服务端的负荷得以分散,虽然在这种改进的系统结构中,RTMP服务器的性能要求比较高。

TCP与UDP对比

TCP为点对点的协议,这意味着各个客户需要分开客户机/服务器链接,因而无法在网络级实现对多个客户机的数据广播。如果有一个数据流必须同时被传送到多个客户机,服务器必须传送数据流的副本到各个客户机,TCP能够根据网络带宽和拥挤程度动态地调节传送速度并重新发送丢失的数据包,这样虽然保证了数据传输的可靠性,但是对服务器资源耗费较大,在数据流大的场合难以保证数据流传输的实时性。
UDP为不可靠传输协议,在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度,计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段;UDP协议不需要维护连接状态,也不认为每个数据包都必须到达接受端,因此网络负荷比TCP小,传输速度也要比TCP快;但在网络越拥挤时,越有更多的数据包丢失。
UDP和TCP协议的主要区别是两者在如何实现信息的可靠传递方面不同。TCP协议中包含了专门的传递保证机制,当数据接收方收到发送方传来的信息时,会自动向发送方发出确认消息;发送方只有在接收到该确认消息之后才继续传送其它信息,否则将一直等待直到收到确认信息为止。
所以TCP比UDP多了建立连接的时间。相对UDP而言,TCP具有更高的安全性和可靠性。TCP协议传输的大小不限制,一旦连接被建立,双方可以按照一定的格式传输大量的数据,而UDP是一个不可靠的协议,大小有限制,每次不能超过64K。
相对于TCP协议,UDP协议的另外一个不同之处在于如何接收突法性的多个数据报。不同于TCP,UDP并不能确保数据的发送和接收顺序。
RCP位于UDP之上,UDP虽然没有TCP那么可靠,并且无法保证实时业务的服务质量,需要RTCP实时监控数据传输和服务质量,但是,由于UDP的传输时延低于TCP,能与视频和音频很好匹配。因此,在实际应用中,RTP/RTCP/UDP用于音频/视频媒体,而TCP用于数据和控制信令的传输。
三者的性能对比见表。

|

协议名称 |

复杂性 | 连接建
立时间 |

可靠性 | 是否确保数据报发送和接受顺序 |

实时性 |

适用范围 | 是否支持组播

| | —- | —- | —- | —- | —- | —- | —- | —- | | RTP/RTCP | 低 | 少 | 低 | 否 | 是 | 实时音视
频媒体传输 | 支持 | | TCP | 高 | 多 | 高 | 是 | 否 | 数据和控制信令传输 | 不支持 | | UDP | 低 | 少 | 低 | 否 | 否 | 音视频媒体传输 | 支持

|