AlphaGo(“Go”为日文“碁”字发音转写,是围棋的西方名称),直译为阿尔法围棋,亦被音译为阿尔法狗阿法狗阿发狗等,是于2014年开始由英国伦敦Google DeepMind开发的人工智能围棋软件,以及对应的电影纪录片《AlphaGo世纪对决》。
    专业术语上来说,AlphaGo的做法是使用了蒙特卡洛树搜索与两个深度神经网络相结合的方法,一个是以借助估值网络(value network)来评估大量的选点,一个是借助走棋网络(policy network)来选择落子,并使用强化学习进一步改善它。在这种设计下,电脑可以结合树状图的长远推断,又可像人类的大脑一样自发学习进行直觉训练,以提高下棋实力

    一般认为,电脑要在围棋中取胜比在国际象棋等游戏中取胜要困难得多,因为围棋的下棋点极多,分支因子远多于其他游戏,而且每次落子对情势的好坏飘忽不定, 诸如暴力搜索法Alpha-beta剪枝启发式搜索的传统人工智能方法在围棋中很难奏效。在1997年IBM的电脑“深蓝)”击败俄籍世界国际象棋冠军加里·卡斯帕罗夫之后,经过18年的发展,棋力最高的人工智能围棋程序才大约达到业余5段围棋棋手的水准,且在不让子的情况下,仍无法击败职业棋手。2012年,在4台PC上运行的Zen程序在让5子和让4子的情况下两次击败日籍九段棋手武宫正树[13]。2013年,Crazy Stone在让4子的情况下击败日籍九段棋手石田芳夫,这样偶尔出现的战果就已经是难得的结果了。
    AlphaGo的研究计划于2014年启动,此后和之前的围棋程序相比表现出显著提升。在和Crazy Stone和Zen等其他围棋程序的500局比赛中,单机版AlphaGo(运行于一台电脑上)仅输一局[16]。而在其后的对局中,分布式版AlphaGo(以分布式运算运行于多台电脑上)在500局比赛中全部获胜,且对抗运行在单机上的AlphaGo约有77%的胜率。2015年10月的分布式运算版本AlphaGo使用了1,202块CPU及176块GPU

    • 2015年10月,AlphaGo击败樊麾,成为第一个无需让子即可在19路棋盘上击败围棋职业棋手电脑围棋程序,写下了历史,并于2016年1月发表在知名期刊《自然)》。
    • 2016年3月,透过自我对弈数以万计盘进行练习强化,AlphaGo在一场五番棋比赛中4:1击败顶尖职业棋手李世石,成为第一个不借助让子而击败围棋职业九段棋手的电脑围棋程序,立下了里程碑。五局赛后韩国棋院授予AlphaGo有史以来第一位名誉职业九段[18]
    • 2016年7月18日,因柯洁那段时间状态不佳,其在Go Ratings网站上的WHR等级分下滑,AlphaGo得以在Go Ratings网站的排名中位列世界第一,但几天之后,柯洁便又反超了AlphaGo。2017年2月初,Go Ratings网站删除了AlphaGo、DeepZenGo等围棋人工智能在该网站上的所有信息。
    • 2016年12月29日至2017年1月4日,再度强化的AlphaGo以“Master)”为账号名称,在未公开其真实身份的情况下,借非正式的网络快棋对战进行测试,挑战中韩日台的一流高手,测试结束时60战全胜。
    • 2017年5月23至27日在乌镇围棋峰会上,最新的强化版AlphaGo和世界第一棋手柯洁比试、并配合八段棋手协同作战与对决五位顶尖九段棋手等五场比赛,获取三比零全胜的战绩,团队战与组队战也全胜,此次AlphaGo利用谷歌TPU执行,加上快速进化的机器学习法,运算资源消耗仅李世石版本的十分之一。[21]在与柯洁的比赛结束后,中国围棋协会授予AlphaGo职业围棋九段的称号。

    最后,AlphaGo在没有人类对手后,AlphaGo之父杰米斯·哈萨比斯宣布AlphaGo退役。而从业余棋手的水平到世界第一,AlphaGo的棋力获取这样的进步,仅仅花了两年左右。
    最终版本AlphaZero拥有更加强大的学习能力,可自我学习,在21天达到胜过中国顶尖棋手柯洁的Alpha Go Master的水平。
    image.png