Pytorch
1、安装
conda create --name pyhorch python=3.8activate pyhorchpip install torch torchvision torchaudiopip install jupyter ## win 跳出选择是否的框,必须选择‘否’pip install matplotlib # 安装主题pip install jupyterthemes# 查看主题jt -l# 主题切换jt -t chesterish# 启动jupyter notebook --ip=127.0.0.1 --port=8000
# 返回当前设备索引torch.cuda.current_device()# 返回GPU的数量torch.cuda.device_count()# 返回gpu名字,设备索引默认从0开始torch.cuda.get_device_name(0)# cuda是否可用torch.cuda.is_available()
Test
import torchfrom torch.utils.data import Datasetfrom torchvision import datasetsfrom torchvision.transforms import ToTensorimport matplotlib.pyplot as plttraining_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor())test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor())labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot",}figure = plt.figure(figsize=(8, 8))cols, rows = 3, 3for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray")plt.show()
错误
'''Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.'''import osos.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE''''Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.IOError: image file is truncated (X bytes not processed)'''from PIL import ImageFileImageFile.LOAD_TRUNCATED_IMAGES = True'''数据集较小时(小于2W)建议num_works不用管默认就行,因为用了反而比没用慢。当数据集较大时建议采用,num_works一般设置为(CPU线程数+-1)为最佳,可以用以下代码找出最佳num_works(注意windows用户如果要使用多核多线程必须把训练放在if __name__ == '__main__':下才不会报错)'''# windows 环境下num_works==0