1.数据聚合

聚合(aggregations可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组
    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

注意:参加聚合的字段必须是keyword、日期、数值、布尔类型

1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

  1. GET /hotel/_search
  2. {
  3. "size": 0, // 设置size0,结果中不包含文档,只包含聚合结果
  4. "aggs": { // 定义聚合
  5. "brandAgg": { //给聚合起个名字
  6. "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
  7. "field": "brand", // 参与聚合的字段
  8. "size": 20 // 希望获取的聚合结果数量
  9. }
  10. }
  11. }
  12. }

结果如图:

image.png

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

  1. GET /hotel/_search
  2. {
  3. "size": 0,
  4. "aggs": {
  5. "brandAgg": {
  6. "terms": {
  7. "field": "brand",
  8. "order": {
  9. "_count": "asc" // 按照_count升序排列
  10. },
  11. "size": 20
  12. }
  13. }
  14. }
  15. }

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

  1. GET /hotel/_search
  2. {
  3. "query": {
  4. "range": {
  5. "price": {
  6. "lte": 200 // 只对200元以下的文档聚合
  7. }
  8. }
  9. },
  10. "size": 0,
  11. "aggs": {
  12. "brandAgg": {
  13. "terms": {
  14. "field": "brand",
  15. "size": 20
  16. }
  17. }
  18. }
  19. }

这次,聚合得到的品牌明显变少了:

image.png

1.2.4.Metric聚合语法

上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

  1. GET /hotel/_search
  2. {
  3. "size": 0,
  4. "aggs": {
  5. "brandAgg": {
  6. "terms": {
  7. "field": "brand",
  8. "size": 20
  9. },
  10. "aggs": { // brands聚合的子聚合,也就是分组后对每组分别计算
  11. "score_stats": { // 聚合名称
  12. "stats": { // 聚合类型,这里stats可以计算minmaxavg
  13. "field": "score" // 聚合字段,这里是score
  14. }
  15. }
  16. }
  17. }
  18. }
  19. }

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

image.png

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

image.png

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

image.png

1.3.2.业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

image.png

分析:

目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。

例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。

也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。

如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?

使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

image.png

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

image.png

结果是一个Map结构:

  • key是字符串,城市、星级、品牌、价格
  • value是集合,例如多个城市的名称

1.3.3.业务实现

cn.itcast.hotel.web包的HotelController中添加一个方法,遵循下面的要求:

  • 请求方式:POST
  • 请求路径:/hotel/filters
  • 请求参数:RequestParams,与搜索文档的参数一致
  • 返回值类型:Map<String, List<String>>

代码:

  1. @PostMapping("filters")
  2. public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
  3. return hotelService.getFilters(params);
  4. }

这里调用了IHotelService中的getFilters方法,尚未实现。

cn.itcast.hotel.service.IHotelService中定义新方法:

  1. Map<String, List<String>> filters(RequestParams params);

cn.itcast.hotel.service.impl.HotelService中实现该方法:

  1. @Override
  2. public Map<String, List<String>> filters(RequestParams params) {
  3. try {
  4. // 1.准备Request
  5. SearchRequest request = new SearchRequest("hotel");
  6. // 2.准备DSL
  7. // 2.1.query
  8. buildBasicQuery(params, request);
  9. // 2.2.设置size
  10. request.source().size(0);
  11. // 2.3.聚合
  12. buildAggregation(request);
  13. // 3.发出请求
  14. SearchResponse response = client.search(request, RequestOptions.DEFAULT);
  15. // 4.解析结果
  16. Map<String, List<String>> result = new HashMap<>();
  17. Aggregations aggregations = response.getAggregations();
  18. // 4.1.根据品牌名称,获取品牌结果
  19. List<String> brandList = getAggByName(aggregations, "brandAgg");
  20. result.put("品牌", brandList);
  21. // 4.2.根据品牌名称,获取品牌结果
  22. List<String> cityList = getAggByName(aggregations, "cityAgg");
  23. result.put("城市", cityList);
  24. // 4.3.根据品牌名称,获取品牌结果
  25. List<String> starList = getAggByName(aggregations, "starAgg");
  26. result.put("星级", starList);
  27. return result;
  28. } catch (IOException e) {
  29. throw new RuntimeException(e);
  30. }
  31. }
  32. private void buildAggregation(SearchRequest request) {
  33. request.source().aggregation(AggregationBuilders
  34. .terms("brandAgg")
  35. .field("brand")
  36. .size(100)
  37. );
  38. request.source().aggregation(AggregationBuilders
  39. .terms("cityAgg")
  40. .field("city")
  41. .size(100)
  42. );
  43. request.source().aggregation(AggregationBuilders
  44. .terms("starAgg")
  45. .field("starName")
  46. .size(100)
  47. );
  48. }
  49. private List<String> getAggByName(Aggregations aggregations, String aggName) {
  50. // 4.1.根据聚合名称获取聚合结果
  51. Terms brandTerms = aggregations.get(aggName);
  52. // 4.2.获取buckets
  53. List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
  54. // 4.3.遍历
  55. List<String> brandList = new ArrayList<>();
  56. for (Terms.Bucket bucket : buckets) {
  57. // 4.4.获取key
  58. String key = bucket.getKeyAsString();
  59. brandList.add(key);
  60. }
  61. return brandList;
  62. }

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

image.png

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1.拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

image.png

课前资料中也提供了拼音分词器的安装包:

image.png

安装方式与IK分词器一样,分三步:

  1. ①解压
  2. ②上传到虚拟机中,elasticsearchplugin目录
  3. ③重启elasticsearch
  4. ④测试

详细安装步骤可以参考IK分词器的安装过程。

测试用法如下:

  1. POST /_analyze
  2. {
  3. "text": "如家酒店还不错",
  4. "analyzer": "pinyin"
  5. }

结果:

image.png

2.2.自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

image.png

声明自定义分词器的语法如下:

  1. PUT /test
  2. {
  3. "settings": {
  4. "analysis": {
  5. "analyzer": { // 自定义分词器
  6. "my_analyzer": { // 分词器名称
  7. "tokenizer": "ik_max_word",
  8. "filter": "py"
  9. }
  10. },
  11. "filter": { // 自定义tokenizer filter
  12. "py": { // 过滤器名称
  13. "type": "pinyin", // 过滤器类型,这里是pinyin
  14. "keep_full_pinyin": false,
  15. "keep_joined_full_pinyin": true,
  16. "keep_original": true,
  17. "limit_first_letter_length": 16,
  18. "remove_duplicated_term": true,
  19. "none_chinese_pinyin_tokenize": false
  20. }
  21. }
  22. }
  23. },
  24. "mappings": {
  25. "properties": {
  26. "name": {
  27. "type": "text",
  28. "analyzer": "my_analyzer",
  29. "search_analyzer": "ik_smart"
  30. }
  31. }
  32. }
  33. }

测试:

image.png

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器
  • ②解压并放到elasticsearch的plugin目录
  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分
  • ②character filter
  • ③tokenizer
  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

2.3.自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。
  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

  1. // 创建索引库
  2. PUT test
  3. {
  4. "mappings": {
  5. "properties": {
  6. "title":{
  7. "type": "completion"
  8. }
  9. }
  10. }
  11. }

然后插入下面的数据:

  1. // 示例数据
  2. POST test/_doc
  3. {
  4. "title": ["Sony", "WH-1000XM3"]
  5. }
  6. POST test/_doc
  7. {
  8. "title": ["SK-II", "PITERA"]
  9. }
  10. POST test/_doc
  11. {
  12. "title": ["Nintendo", "switch"]
  13. }

查询的DSL语句如下:

  1. // 自动补全查询
  2. GET /test/_search
  3. {
  4. "suggest": {
  5. "title_suggest": {
  6. "text": "s", // 关键字
  7. "completion": {
  8. "field": "title", // 补全查询的字段
  9. "skip_duplicates": true, // 跳过重复的
  10. "size": 10 // 获取前10条结果
  11. }
  12. }
  13. }
  14. }

2.4.实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器
  2. 修改索引库的name、all字段,使用自定义分词器
  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
  4. 给HotelDoc类添加suggestion字段,内容包含brand、business
  5. 重新导入数据到hotel库

2.4.1.修改酒店映射结构

代码如下:

  1. // 酒店数据索引库
  2. PUT /hotel
  3. {
  4. "settings": {
  5. "analysis": {
  6. "analyzer": {
  7. "text_anlyzer": {
  8. "tokenizer": "ik_max_word",
  9. "filter": "py"
  10. },
  11. "completion_analyzer": {
  12. "tokenizer": "keyword",
  13. "filter": "py"
  14. }
  15. },
  16. "filter": {
  17. "py": {
  18. "type": "pinyin",
  19. "keep_full_pinyin": false,
  20. "keep_joined_full_pinyin": true,
  21. "keep_original": true,
  22. "limit_first_letter_length": 16,
  23. "remove_duplicated_term": true,
  24. "none_chinese_pinyin_tokenize": false
  25. }
  26. }
  27. }
  28. },
  29. "mappings": {
  30. "properties": {
  31. "id":{
  32. "type": "keyword"
  33. },
  34. "name":{
  35. "type": "text",
  36. "analyzer": "text_anlyzer",
  37. "search_analyzer": "ik_smart",
  38. "copy_to": "all"
  39. },
  40. "address":{
  41. "type": "keyword",
  42. "index": false
  43. },
  44. "price":{
  45. "type": "integer"
  46. },
  47. "score":{
  48. "type": "integer"
  49. },
  50. "brand":{
  51. "type": "keyword",
  52. "copy_to": "all"
  53. },
  54. "city":{
  55. "type": "keyword"
  56. },
  57. "starName":{
  58. "type": "keyword"
  59. },
  60. "business":{
  61. "type": "keyword",
  62. "copy_to": "all"
  63. },
  64. "location":{
  65. "type": "geo_point"
  66. },
  67. "pic":{
  68. "type": "keyword",
  69. "index": false
  70. },
  71. "all":{
  72. "type": "text",
  73. "analyzer": "text_anlyzer",
  74. "search_analyzer": "ik_smart"
  75. },
  76. "suggestion":{
  77. "type": "completion",
  78. "analyzer": "completion_analyzer"
  79. }
  80. }
  81. }
  82. }

2.4.2.修改HotelDoc实体

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。

代码如下:

  1. package cn.itcast.hotel.pojo;
  2. import lombok.Data;
  3. import lombok.NoArgsConstructor;
  4. import java.util.ArrayList;
  5. import java.util.Arrays;
  6. import java.util.Collections;
  7. import java.util.List;
  8. @Data
  9. @NoArgsConstructor
  10. public class HotelDoc {
  11. private Long id;
  12. private String name;
  13. private String address;
  14. private Integer price;
  15. private Integer score;
  16. private String brand;
  17. private String city;
  18. private String starName;
  19. private String business;
  20. private String location;
  21. private String pic;
  22. private Object distance;
  23. private Boolean isAD;
  24. private List<String> suggestion;
  25. public HotelDoc(Hotel hotel) {
  26. this.id = hotel.getId();
  27. this.name = hotel.getName();
  28. this.address = hotel.getAddress();
  29. this.price = hotel.getPrice();
  30. this.score = hotel.getScore();
  31. this.brand = hotel.getBrand();
  32. this.city = hotel.getCity();
  33. this.starName = hotel.getStarName();
  34. this.business = hotel.getBusiness();
  35. this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
  36. this.pic = hotel.getPic();
  37. // 组装suggestion
  38. if(this.business.contains("/")){
  39. // business有多个值,需要切割
  40. String[] arr = this.business.split("/");
  41. // 添加元素
  42. this.suggestion = new ArrayList<>();
  43. this.suggestion.add(this.brand);
  44. Collections.addAll(this.suggestion, arr);
  45. }else {
  46. this.suggestion = Arrays.asList(this.brand, this.business);
  47. }
  48. }
  49. }

2.4.3.重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

image.png

2.4.4.自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

image.png

而自动补全的结果也比较特殊,解析的代码如下:

image.png

2.4.5.实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

image.png

返回值是补全词条的集合,类型为List<String>

1)在cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:

  1. @GetMapping("suggestion")
  2. public List<String> getSuggestions(@RequestParam("key") String prefix) {
  3. return hotelService.getSuggestions(prefix);
  4. }

2)在cn.itcast.hotel.service包下的IhotelService中添加方法:

  1. List<String> getSuggestions(String prefix);

3)在cn.itcast.hotel.service.impl.HotelService中实现该方法:

  1. @Override
  2. public List<String> getSuggestions(String prefix) {
  3. try {
  4. // 1.准备Request
  5. SearchRequest request = new SearchRequest("hotel");
  6. // 2.准备DSL
  7. request.source().suggest(new SuggestBuilder().addSuggestion(
  8. "suggestions",
  9. SuggestBuilders.completionSuggestion("suggestion")
  10. .prefix(prefix)
  11. .skipDuplicates(true)
  12. .size(10)
  13. ));
  14. // 3.发起请求
  15. SearchResponse response = client.search(request, RequestOptions.DEFAULT);
  16. // 4.解析结果
  17. Suggest suggest = response.getSuggest();
  18. // 4.1.根据补全查询名称,获取补全结果
  19. CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
  20. // 4.2.获取options
  21. List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
  22. // 4.3.遍历
  23. List<String> list = new ArrayList<>(options.size());
  24. for (CompletionSuggestion.Entry.Option option : options) {
  25. String text = option.getText().toString();
  26. list.add(text);
  27. }
  28. return list;
  29. } catch (IOException e) {
  30. throw new RuntimeException(e);
  31. }
  32. }

3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

image.png

3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1.同步调用

方案一:同步调用

image.png

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

image.png

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

image.png

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新 中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步

3.2.1.思路

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
  • 声明exchange、queue、RoutingKey
  • 在hotel-admin中的增、删、改业务中完成消息发送
  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据
  • 启动并测试数据同步功能

3.2.2.导入demo

导入课前资料提供的hotel-admin项目:

分布式搜索引擎03 - 图23

运行后,访问 http://localhost:8099

分布式搜索引擎03 - 图24

其中包含了酒店的CRUD功能:

分布式搜索引擎03 - 图25

3.2.3.声明交换机、队列

MQ结构如图:

image.png

1)引入依赖

在hotel-admin、hotel-demo中引入rabbitmq的依赖:

  1. <!--amqp-->
  2. <dependency>
  3. <groupId>org.springframework.boot</groupId>
  4. <artifactId>spring-boot-starter-amqp</artifactId>
  5. </dependency>

2)声明队列交换机名称

在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants

  1. package cn.itcast.hotel.constatnts;
  2. public class MqConstants {
  3. /**
  4. * 交换机
  5. */
  6. public final static String HOTEL_EXCHANGE = "hotel.topic";
  7. /**
  8. * 监听新增和修改的队列
  9. */
  10. public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
  11. /**
  12. * 监听删除的队列
  13. */
  14. public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
  15. /**
  16. * 新增或修改的RoutingKey
  17. */
  18. public final static String HOTEL_INSERT_KEY = "hotel.insert";
  19. /**
  20. * 删除的RoutingKey
  21. */
  22. public final static String HOTEL_DELETE_KEY = "hotel.delete";
  23. }

3)声明队列交换机

在hotel-demo中,定义配置类,声明队列、交换机:

  1. package cn.itcast.hotel.config;
  2. import cn.itcast.hotel.constants.MqConstants;
  3. import org.springframework.amqp.core.Binding;
  4. import org.springframework.amqp.core.BindingBuilder;
  5. import org.springframework.amqp.core.Queue;
  6. import org.springframework.amqp.core.TopicExchange;
  7. import org.springframework.context.annotation.Bean;
  8. import org.springframework.context.annotation.Configuration;
  9. @Configuration
  10. public class MqConfig {
  11. @Bean
  12. public TopicExchange topicExchange(){
  13. return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
  14. }
  15. @Bean
  16. public Queue insertQueue(){
  17. return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
  18. }
  19. @Bean
  20. public Queue deleteQueue(){
  21. return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
  22. }
  23. @Bean
  24. public Binding insertQueueBinding(){
  25. return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
  26. }
  27. @Bean
  28. public Binding deleteQueueBinding(){
  29. return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
  30. }
  31. }

3.2.4.发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:

image.png

3.2.5.接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务

  1. void deleteById(Long id);
  2. void insertById(Long id);

2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:

  1. @Override
  2. public void deleteById(Long id) {
  3. try {
  4. // 1.准备Request
  5. DeleteRequest request = new DeleteRequest("hotel", id.toString());
  6. // 2.发送请求
  7. client.delete(request, RequestOptions.DEFAULT);
  8. } catch (IOException e) {
  9. throw new RuntimeException(e);
  10. }
  11. }
  12. @Override
  13. public void insertById(Long id) {
  14. try {
  15. // 0.根据id查询酒店数据
  16. Hotel hotel = getById(id);
  17. // 转换为文档类型
  18. HotelDoc hotelDoc = new HotelDoc(hotel);
  19. // 1.准备Request对象
  20. IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
  21. // 2.准备Json文档
  22. request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
  23. // 3.发送请求
  24. client.index(request, RequestOptions.DEFAULT);
  25. } catch (IOException e) {
  26. throw new RuntimeException(e);
  27. }
  28. }

3)编写监听器

在hotel-demo中的cn.itcast.hotel.mq包新增一个类:

  1. package cn.itcast.hotel.mq;
  2. import cn.itcast.hotel.constants.MqConstants;
  3. import cn.itcast.hotel.service.IHotelService;
  4. import org.springframework.amqp.rabbit.annotation.RabbitListener;
  5. import org.springframework.beans.factory.annotation.Autowired;
  6. import org.springframework.stereotype.Component;
  7. @Component
  8. public class HotelListener {
  9. @Autowired
  10. private IHotelService hotelService;
  11. /**
  12. * 监听酒店新增或修改的业务
  13. * @param id 酒店id
  14. */
  15. @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
  16. public void listenHotelInsertOrUpdate(Long id){
  17. hotelService.insertById(id);
  18. }
  19. /**
  20. * 监听酒店删除的业务
  21. * @param id 酒店id
  22. */
  23. @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
  24. public void listenHotelDelete(Long id){
  25. hotelService.deleteById(id);
  26. }
  27. }

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。
  • 节点(node) :集群中的一个 Elasticearch 实例
  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
    解决问题:数据量太大,单点存储量有限的问题。
    image-20200104124440086-5602723.png

    此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

image-20200104124551912.png

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1.搭建ES集群

参考课前资料的文档:

image.png

其中的第四章节:

image.png

4.2.集群脑裂问题

4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

image.png

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

image.png

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

image.png

此时,node2和node3认为node1宕机,就会重新选主:

image.png

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

image.png

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点
  • 合并查询到的结果,返回给用户

4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1.分片存储测试

插入三条数据:

image.png

image.png

image.png

测试可以看到,三条数据分别在不同分片:

image.png

结果:

image.png

4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

image.png

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

image.png

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

image.png

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

image.png

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

image.png

宕机后的第一件事,需要重新选主,例如选中了node2:

image.png

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

image.png