将数据集与transforms结合
import torchvisionfrom torch.utils.tensorboard import SummaryWriterdataset_transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor()])# train_dataset = torchvision.datasets.CIFAR10(root="./download_data",train=True,download=True)# test_dataset = torchvision.datasets.CIFAR10(root="./download_data",train=False,download=True)# 下载数据集,这其实是一个下载接口train_dataset = torchvision.datasets.CIFAR10(root="./download_data",train=True,transform=dataset_transform,download=True)test_dataset = torchvision.datasets.CIFAR10(root="./download_data",train=False,transform=dataset_transform,download=True)'''print(test_dataset[0])print(test_dataset.classes)img,target = test_dataset[0]print(img)print(target)print(test_dataset.classes[target])img.show()'''writer = SummaryWriter("test_data")for i in range(10): img,target = test_dataset[i] writer.add_image("dataset",img,i)writer.close()