深度学习笔记

白天 夜间 首页 下载 阅读记录
  我的书签   添加书签   移除书签

模型优化-NPAS:A Compiler-aware Framework of Unified Network Pruning and Architecture Search for Beyond Real-Time Mobile Acceleration

浏览 93 扫码 分享 2022-07-12 23:12:14

若有收获,就点个赞吧

0 人点赞

上一篇:
下一篇:
  • 书签
  • 添加书签 移除书签
  • 论文笔记-HALP: hardware-aware latency pruning
  • 模型优化-NVIT: VISION TRANSFORMER COMPRESSION AND PARAMETER REDISTRIBUTION�
  • 模型优化-LITE TRANSFORMER WITH LONG-SHORT RANGE ATTENTION
  • Transformer - MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER �
  • 模型优化-Chasing Sparsity in Vision Transformers: An End-to-End Exploration
  • 域适应-CDTRANS: CROSS-DOMAIN TRANSFORMER FOR UNSUPERVISED DOMAIN ADAPTATION
  • 域适应-Deep Transfer Network: Unsupervised Domain Adaptation
  • 模型优化-Multi-objective Magnitude-Based Pruning for Latency-Aware Deep Neural Network Compression
  • 模型优化-Latency-aware automatic CNN channel pruning with GPU runtime analysis
  • 模型压缩笔记
  • 单目深度估计-Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real Domain Shift and Improve Depth Estimation�
  • 单目深度估计-T2Net:Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks
  • Attention is All You Need
  • 风格迁移-MUNIT
  • 模型优化-transformer
  • 模型优化-Manifold Regularized Dynamic Network Pruning
  • 图像匹配-Learnable Motion Coherence for Correspondence Pruning
  • 模型优化-NPAS:A Compiler-aware Framework of Unified Network Pruning and Architecture Search for Beyond Real-Time Mobile Acceleration
  • 单目深度估计-NeW CRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation
  • 模型优化-Network Pruning via Performance Maximization
  • 论文笔记-Ps and Qs:quantization-aware pruning for efficient low latency neural network inference
暂无相关搜索结果!

    让时间为你证明

    展开/收起文章目录

    分享,让知识传承更久远

    文章二维码

    手机扫一扫,轻松掌上读

    文档下载

    请下载您需要的格式的文档,随时随地,享受汲取知识的乐趣!
    PDF文档 EPUB文档 MOBI文档

    书签列表

      阅读记录

      阅读进度: 0.00% ( 0/0 ) 重置阅读进度

        思维导图备注