为什么需要 Stream

Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。它也不同于 StAX 对 XML 解析的 Stream,也不是 Amazon Kinesis 对大数据实时处理的 Stream。Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言 + 多核时代综合影响的产物。

什么是聚合操作

在传统的 J2EE 应用中,Java 代码经常不得不依赖于关系型数据库的聚合操作来完成诸如:

  • 客户每月平均消费金额
  • 最昂贵的在售商品
  • 本周完成的有效订单(排除了无效的)
  • 取十个数据样本作为首页推荐

这类的操作。

但在当今这个数据大爆炸的时代,在数据来源多样化、数据海量化的今天,很多时候不得不脱离 RDBMS,或者以底层返回的数据为基础进行更上层的数据统计。而 Java 的集合 API 中,仅仅有极少量的辅助型方法,更多的时候是程序员需要用 Iterator 来遍历集合,完成相关的聚合应用逻辑。这是一种远不够高效、笨拙的方法。在 Java 7 中,如果要发现 type 为 grocery 的所有交易,然后返回以交易值降序排序好的交易 ID 集合,我们需要这样写:

清单 1. Java 7 的排序、取值实现

  1. List<Transaction> groceryTransactions = new Arraylist<>();
  2. for(Transaction t: transactions){
  3. if(t.getType() == Transaction.GROCERY){
  4. groceryTransactions.add(t);
  5. }
  6. }
  7. Collections.sort(groceryTransactions, new Comparator(){
  8. public int compare(Transaction t1, Transaction t2){
  9. return t2.getValue().compareTo(t1.getValue());
  10. }
  11. });
  12. List<Integer> transactionIds = new ArrayList<>();
  13. for(Transaction t: groceryTransactions){
  14. transactionsIds.add(t.getId());
  15. }

而在 Java 8 使用 Stream,代码更加简洁易读;而且使用并发模式,程序执行速度更快。

清单 2. Java 8 的排序、取值实现

  1. List<Integer> transactionsIds = transactions.parallelStream().
  2. filter(t -> t.getType() == Transaction.GROCERY).
  3. sorted(comparing(Transaction::getValue).reversed()).
  4. map(Transaction::getId).
  5. collect(toList());

Stream 总览

什么是流

Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。

Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。

而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:

>
1. 1.0-1.4 中的 java.lang.Thread
2. 5.0 中的 java.util.concurrent
02. 6.0 中的 Phasers 等
10. 7.0 中的 Fork/Join 框架
1. 8.0 中的 Lambda

Stream 的另外一大特点是,数据源本身可以是无限的。

流的构成

当我们使用一个流的时候,通常包括三个基本步骤:

获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道,如下图所示。

图 1. 流管道 (Stream Pipeline) 的构成
JDK1.8-Stream()使用详解 - 图1

有多种方式生成 Stream Source:

  • 从 Collection 和数组

    • Collection.stream()
    • Collection.parallelStream()
    • Arrays.stream(T array) or Stream.of()

    从 BufferedReader

    • java.io.BufferedReader.lines()
  • 静态工厂
    • java.util.stream.IntStream.range()
    • java.nio.file.Files.walk()
  • 自己构建

    • java.util.Spliterator
    • 其它
      • Random.ints()
      • BitSet.stream()
      • Pattern.splitAsStream(java.lang.CharSequence)
      • JarFile.stream()

流的操作类型分为两种:

  • Intermediate:一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。
  • Terminal:一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。

在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。

还有一种操作被称为 short-circuiting。用以指:

  • 对于一个intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的Stream,但返回一个有限的新Stream。
  • 对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。

当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。

清单 3. 一个流操作的示例

  1. int sum = widgets.stream()
  2. .filter(w -> w.getColor() == RED)
  3. .mapToInt(w -> w.getWeight())
  4. .sum();

stream() 获取当前小物件的 source,filter 和 mapToInt 为 intermediate 操作,进行数据筛选和转换,最后一个 sum() 为 terminal 操作,对符合条件的全部小物件作重量求和。

流的使用详解

简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。

流的构造与转换

下面提供最常见的几种构造 Stream 的样例。

清单 4. 构造流的几种常见方法

需要注意的是,对于基本数值型,目前有三种对应的包装类型 Stream:

IntStream、LongStream、DoubleStream。当然我们也可以用 Stream<Integer>、Stream<Long> >、Stream<Double>,但是 boxing 和 unboxing 会很耗时,所以特别为这三种基本数值型提供了对应的Stream。
Java 8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。

清单 5. 数值流的构造

  1. IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println);
  2. IntStream.range(1, 3).forEach(System.out::println);
  3. IntStream.rangeClosed(1, 3).forEach(System.out::println);

清单 6. 流转换为其它数据结构

一个 Stream 只可以使用一次,上面的代码为了简洁而重复使用了数次。

流的操作

接下来,当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。常见的操作可以归类如下。

  • Intermediate
    • map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered
  • Terminal
    • forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator
  • Short-circuiting
    • anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit

我们下面看一下 Stream 的比较典型用法。

map/flatMap


我们先来看 map。如果你熟悉 scala 这类函数式语言,对这个方法应该很了解,它的作用就是把 inputStream的每一个元素,映射成 outputStream 的另外一个元素。

清单 7. 转换大写

  1. List<String> output = wordList.stream().
  2. map(String::toUpperCase).
  3. collect(Collectors.toList());

这段代码把所有的单词转换为大写。

清单 8. 平方数

  1. List<Integer> nums = Arrays.asList(1, 2, 3, 4);
  2. List<Integer> squareNums = nums.stream().
  3. map(n -> n * n).
  4. collect(Collectors.toList());

这段代码生成一个整数 list 的平方数 {1, 4, 9, 16}。

从上面例子可以看出,map 生成的是个 1:1 映射,每个输入元素,都按照规则转换成为另外一个元素。还有一些场景,是一对多映射关系的,这时需要 flatMap。

清单 9. 一对多

  1. Stream<List<Integer>> inputStream = Stream.of(
  2. Arrays.asList(1),
  3. Arrays.asList(2, 3),
  4. Arrays.asList(4, 5, 6)
  5. );
  6. Stream<Integer> outputStream = inputStream.
  7. flatMap((childList) -> childList.stream());

flatMap 把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起,最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。

filter


filter 对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream。

清单 10. 留下偶数

  1. Integer[] sixNums = {1, 2, 3, 4, 5, 6};
  2. Integer[] evens =
  3. Stream.of(sixNums).filter(n -> n%2 == 0).toArray(Integer[]::new);

经过条件“被 2 整除”的 filter,剩下的数字为 {2, 4, 6}。

清单 11. 把单词挑出来

  1. List<String> output = reader.lines().
  2. flatMap(line -> Stream.of(line.split(REGEXP))).
  3. filter(word -> word.length() > 0).
  4. collect(Collectors.toList());

这段代码首先把每行的单词用 flatMap 整理到新的 Stream,然后保留长度不为 0 的,就是整篇文章中的全部单词了。

forEach


forEach 方法接收一个 Lambda 表达式,然后在 Stream 的每一个元素上执行该表达式。

清单 12. 打印姓名(forEach 和 pre-java8 的对比)

对一个人员集合遍历,找出男性并打印姓名。可以看出来,forEach 是为 Lambda 而设计的,保持了最紧凑的风格。而且 Lambda 表达式本身是可以重用的,非常方便。当需要为多核系统优化时,可以 parallelStream().forEach(),只是此时原有元素的次序没法保证,并行的情况下将改变串行时操作的行为,此时 forEach 本身的实现不需要调整,而 Java8 以前的 for 循环 code 可能需要加入额外的多线程逻辑。

但一般认为,forEach 和常规 for 循环的差异不涉及到性能,它们仅仅是函数式风格与传统 Java 风格的差别。

另外一点需要注意,forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。下面的代码是错误的:

  1. stream.forEach(element -> doOneThing(element));
  2. stream.forEach(element -> doAnotherThing(element));

相反,具有相似功能的 intermediate 操作 peek 可以达到上述目的。如下是出现在该 api javadoc 上的一个示例。

清单 13. peek 对每个元素执行操作并返回一个新的 Stream

  1. Stream.of("one", "two", "three", "four")
  2. .filter(e -> e.length() > 3)
  3. .peek(e -> System.out.println("Filtered value: " + e))
  4. .map(String::toUpperCase)
  5. .peek(e -> System.out.println("Mapped value: " + e))
  6. .collect(Collectors.toList());

forEach 不能修改自己包含的本地变量值,也不能用 break/return 之类的关键字提前结束循环。

findFirst


这是一个 termimal 兼 short-circuiting 操作,它总是返回 Stream 的第一个元素,或者空。

这里比较重点的是它的返回值类型:Optional。这也是一个模仿 Scala 语言中的概念,作为一个容器,它可能含有某值,或者不包含。使用它的目的是尽可能避免 NullPointerException。

清单 14. Optional 的两个用例

  1. String strA = " abcd ", strB = null;
  2. print(strA);
  3. print("");
  4. print(strB);
  5. getLength(strA);
  6. getLength("");
  7. getLength(strB);
  8. public static void print(String text) {

在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。

Stream 中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。

reduce


这个方法的主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于Integer sum = integers.reduce(0, (a, b) -> a+b);Integer sum = integers.reduce(0, Integer::sum);

也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。

清单 15. reduce 的用例

上面代码例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。

limit/skip


limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。

清单 16. limit 和 skip 对运行次数的影响

  1. public void testLimitAndSkip() {
  2. List<Person> persons = new ArrayList();
  3. for (int i = 1; i <= 10000; i++) {
  4. Person person = new Person(i, "name" + i);
  5. persons.add(person);
  6. }
  7. List<String> personList2 = persons.stream().
  8. map(Person::getName).limit(10).skip(3).collect(Collectors.toList());
  9. System.out.println(personList2);
  10. }
  11. private class Person {
  12. public int no;
  13. private String name;
  14. public Person (int no, String name) {
  15. this.no = no;
  16. this.name = name;
  17. }
  18. public String getName() {
  19. System.out.println(name);
  20. return name;
  21. }
  22. }

输出结果为:

  1. name1
  2. name2
  3. name3
  4. name4
  5. name5
  6. name6
  7. name7
  8. name8
  9. name9
  10. name10
  11. [name4, name5, name6, name7, name8, name9, name10]

这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。
有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。

清单 17. limit 和 skip 对 sorted 后的运行次数无影响

  1. List<Person> persons = new ArrayList();
  2. for (int i = 1; i <= 5; i++) {
  3. Person person = new Person(i, "name" + i);
  4. persons.add(person);
  5. }
  6. List<Person> personList2 = persons.stream().sorted((p1, p2) ->
  7. p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList());
  8. System.out.println(personList2);

上面的示例对清单 13 做了微调,首先对 5 个元素的 Stream 排序,然后进行 limit 操作。输出结果为:

  1. name2
  2. name1
  3. name3
  4. name2
  5. name4
  6. name3
  7. name5
  8. name4
  9. [stream.StreamDW$Person@816f27d, stream.StreamDW$Person@87aac27]

即虽然最后的返回元素数量是 2,但整个管道中的 sorted 表达式执行次数没有像前面例子相应减少。

最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。

sorted


对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间。我们对清单 14 进行优化:

清单 18. 优化:排序前进行 limit 和 skip

  1. List<Person> persons = new ArrayList();
  2. for (int i = 1; i <= 5; i++) {
  3. Person person = new Person(i, "name" + i);
  4. persons.add(person);
  5. }
  6. List<Person> personList2 = persons.stream().limit(2).sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).collect(Collectors.toList());
  7. System.out.println(personList2);

结果会简单很多:

  1. name2
  2. name1
  3. [stream.StreamDW$Person@6ce253f1, stream.StreamDW$Person@53d8d10a]

当然,这种优化是有 business logic 上的局限性的:即不要求排序后再取值。
min/max/distinct


min 和 max 的功能也可以通过对 Stream 元素先排序,再 findFirst 来实现,但前者的性能会更好,为 O(n),而 sorted 的成本是 O(n log n)。同时它们作为特殊的 reduce 方法被独立出来也是因为求最大最小值是很常见的操作。

清单 19. 找出最长一行的长度

  1. BufferedReader br = new BufferedReader(new FileReader("c:\\SUService.log"));
  2. int longest = br.lines().
  3. mapToInt(String::length).
  4. max().
  5. getAsInt();
  6. br.close();
  7. System.out.println(longest);

下面的例子则使用 distinct 来找出不重复的单词。

清单 20. 找出全文的单词,转小写,并排序

  1. List<String> words = br.lines().
  2. flatMap(line -> Stream.of(line.split(" "))).
  3. filter(word -> word.length() > 0).
  4. map(String::toLowerCase).
  5. distinct().
  6. sorted().
  7. collect(Collectors.toList());
  8. br.close();
  9. System.out.println(words);

Match


Stream 有三个 match 方法,从语义上说:

  • allMatch:Stream 中全部元素符合传入的 predicate,返回 true
  • anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true
  • noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true
    它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。对清单 13 中的 Person 类稍做修改,加入一个 age 属性和 getAge 方法。

清单 21. 使用 Match

  1. List<Person> persons = new ArrayList();
  2. persons.add(new Person(1, "name" + 1, 10));
  3. persons.add(new Person(2, "name" + 2, 21));
  4. persons.add(new Person(3, "name" + 3, 34));
  5. persons.add(new Person(4, "name" + 4, 6));
  6. persons.add(new Person(5, "name" + 5, 55));
  7. boolean isAllAdult = persons.stream().
  8. allMatch(p -> p.getAge() > 18);
  9. System.out.println("All are adult? " + isAllAdult);
  10. boolean isThereAnyChild = persons.stream().
  11. anyMatch(p -> p.getAge() < 12);
  12. System.out.println("Any child? " + isThereAnyChild);

输出结果:

  1. All are adult? false
  2. Any child? true

进阶:自己生成流

Stream.generate


通过实现 Supplier 接口,你可以自己来控制流的生成。这种情形通常用于随机数、常量的 Stream,或者需要前后元素间维持着某种状态信息的 Stream。把 Supplier 实例传递给 Stream.generate() 生成的 Stream,默认是串行(相对 parallel 而言)但无序的(相对 ordered 而言)。由于它是无限的,在管道中,必须利用 limit 之类的操作限制 Stream 大小。

清单 22. 生成 10 个随机整数

  1. Random seed = new Random();
  2. Supplier<Integer> random = seed::nextInt;
  3. Stream.generate(random).limit(10).forEach(System.out::println);

Stream.generate() 还接受自己实现的 Supplier。例如在构造海量测试数据的时候,用某种自动的规则给每一个变量赋值;或者依据公式计算 Stream 的每个元素值。这些都是维持状态信息的情形。

清单 23. 自实现 Supplier

  1. Stream.generate(new PersonSupplier()).
  2. limit(10).
  3. forEach(p -> System.out.println(p.getName() + ", " + p.getAge()));
  4. private class PersonSupplier implements Supplier<Person> {
  5. private int index = 0;
  6. private Random random = new Random();
  7. @Override
  8. public Person get() {
  9. return new Person(index++, "StormTestUser" + index, random.nextInt(100));
  10. }
  11. }

输出结果:

  1. StormTestUser1, 9
  2. StormTestUser2, 12
  3. StormTestUser3, 88
  4. StormTestUser4, 51
  5. StormTestUser5, 22
  6. StormTestUser6, 28
  7. StormTestUser7, 81
  8. StormTestUser8, 51
  9. StormTestUser9, 4
  10. StormTestUser10, 76

iterate 跟 reduce 操作很像,接受一个种子值,和一个 UnaryOperator(例如 f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。

清单 24. 生成一个等差数列

  1. Stream.iterate(0, n -> n + 3).limit(10). forEach(x -> System.out.print(x + " "));

输出结果:

  1. 0 3 6 9 12 15 18 21 24 27

与 Stream.generate 相仿,在 iterate 时候管道必须有 limit 这样的操作来限制 Stream 大小。
进阶:用 Collectors 来进行 reduction 操作
java.util.stream.Collectors 类的主要作用就是辅助进行各类有用的 reduction 操作,例如转变输出为 Collection,把 Stream 元素进行归组。
groupingBy/partitioningBy

清单 25. 按照年龄归组

  1. Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()).
  2. limit(100).
  3. collect(Collectors.groupingBy(Person::getAge));
  4. Iterator it = personGroups.entrySet().iterator();
  5. while (it.hasNext()) {
  6. Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next();
  7. System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
  8. }

上面的 code,首先生成 100 人的信息,然后按照年龄归组,相同年龄的人放到同一个 list 中,可以看到如下的输出:

  1. Age 0 = 2
  2. Age 1 = 2
  3. Age 5 = 2
  4. Age 8 = 1
  5. Age 9 = 1
  6. Age 11 = 2
  7. ……

清单 26. 按照未成年人和成年人归组

  1. Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()).
  2. limit(100).
  3. collect(Collectors.partitioningBy(p -> p.getAge() < 18));
  4. System.out.println("Children number: " + children.get(true).size());
  5. System.out.println("Adult number: " + children.get(false).size());

输出结果:

  1. Children number: 23
  2. Adult number: 77

在使用条件“年龄小于 18”进行分组后可以看到,不到 18 岁的未成年人是一组,成年人是另外一组。partitioningBy 其实是一种特殊的 groupingBy,它依照条件测试的是否两种结果来构造返回的数据结构,get(true) 和 get(false) 能即为全部的元素对象。

结束语

总之,Stream 的特性可以归纳为: