C++ 线程池
线程池都需要什么功能?
线程池需要支持以下几个基本功能:
- 核心线程数(core_threads):线程池中拥有的最少线程个数,初始化时就会创建好的线程,常驻于线程池。
 - 最大线程个数(max_threads):线程池中拥有的最大线程个数,max_threads>=core_threads,当任务的个数太多线程池执行不过来时,内部就会创建更多的线程用于执行更多的任务,内部线程数不会超过max_threads,多创建出来的线程在一段时间内没有执行任务则会自动被回收掉,最终线程个数保持在核心线程数。
 - 超时时间(time_out):如上所述,多创建出来的线程在time_out时间内没有执行任务就会被回收。
 - 可获取当前线程池中线程的总个数。
 - 可获取当前线程池中空闲线程的个数。
 - 开启线程池功能的开关。
 关闭线程池功能的开关,可以选择是否立即关闭,立即关闭线程池时,当前线程池里缓存的任务不会被执行。
如何实现线程池?下面是自己实现的线程池逻辑。
线程池中主要的数据结构
1. 链表或者数组:用于存储线程池中的线程。
2. 队列:用于存储需要放入线程池中执行的任务。
3. 条件变量:当有任务需要执行时,用于通知正在等待的线程从任务队列中取出任务执行。
代码如下:class ThreadPool {public:using PoolSeconds = std::chrono::seconds;/** 线程池的配置* core_threads: 核心线程个数,线程池中最少拥有的线程个数,初始化就会创建好的线程,常驻于线程池** max_threads: >=core_threads,当任务的个数太多线程池执行不过来时,* 内部就会创建更多的线程用于执行更多的任务,内部线程数不会超过max_threads** max_task_size: 内部允许存储的最大任务个数,暂时没有使用** time_out: Cache线程的超时时间,Cache线程指的是max_threads-core_threads的线程,* 当time_out时间内没有执行任务,此线程就会被自动回收*/struct ThreadPoolConfig {int core_threads;int max_threads;int max_task_size;PoolSeconds time_out;};/*** 线程的状态:有等待、运行、停止*/enum class ThreadState { kInit = 0, kWaiting = 1, kRunning = 2, kStop = 3 };/*** 线程的种类标识:标志该线程是核心线程还是Cache线程,Cache是内部为了执行更多任务临时创建出来的*/enum class ThreadFlag { kInit = 0, kCore = 1, kCache = 2 };using ThreadPtr = std::shared_ptr<std::thread>;using ThreadId = std::atomic<int>;using ThreadStateAtomic = std::atomic<ThreadState>;using ThreadFlagAtomic = std::atomic<ThreadFlag>;/*** 线程池中线程存在的基本单位,每个线程都有个自定义的ID,有线程种类标识和状态*/struct ThreadWrapper {ThreadPtr ptr;ThreadId id;ThreadFlagAtomic flag;ThreadStateAtomic state;ThreadWrapper() {ptr = nullptr;id = 0;state.store(ThreadState::kInit);}};using ThreadWrapperPtr = std::shared_ptr<ThreadWrapper>;using ThreadPoolLock = std::unique_lock<std::mutex>;private:ThreadPoolConfig config_;std::list<ThreadWrapperPtr> worker_threads_;std::queue<std::function<void()>> tasks_;std::mutex task_mutex_;std::condition_variable task_cv_;std::atomic<int> total_function_num_;std::atomic<int> waiting_thread_num_;std::atomic<int> thread_id_; // 用于为新创建的线程分配IDstd::atomic<bool> is_shutdown_now_;std::atomic<bool> is_shutdown_;std::atomic<bool> is_available_;};
线程池的初始化
在构造函数中将各个成员变量都附初值,同时判断线程池的config是否合法。 ```cpp ThreadPool(ThreadPoolConfig config) : config(config) { this->total_function_num.store(0); this->waitingthread_num.store(0);
this->threadid.store(0); this->isshutdown.store(false); this->isshutdown_now.store(false);
if (IsValidConfig(config_)) {
is_available_.store(true);
} else {
is_available_.store(false);
} }
bool IsValidConfig(ThreadPoolConfig config) { if (config.core_threads < 1 || config.max_threads < config.core_threads || config.time_out.count() < 1) { return false; } return true; }
<a name="PdCw5"></a>### 开启线程池功能创建核心线程数个线程,常驻于线程池,等待任务的执行,线程ID由GetNextThreadId()统一分配。```cpp// 开启线程池功能bool Start() {if (!IsAvailable()) {return false;}int core_thread_num = config_.core_threads;cout << "Init thread num " << core_thread_num << endl;while (core_thread_num-- > 0) {AddThread(GetNextThreadId());}cout << "Init thread end" << endl;return true;}
关闭线程
这里有两个标志位,isshutdown_now置为true表示立即关闭线程,isshutdown置为true则表示先执行完队列里的任务再关闭线程池。
// 关掉线程池,内部还没有执行的任务会继续执行void ShutDown() {ShutDown(false);cout << "shutdown" << endl;}// 执行关掉线程池,内部还没有执行的任务直接取消,不会再执行void ShutDownNow() {ShutDown(true);cout << "shutdown now" << endl;}// privatevoid ShutDown(bool is_now) {if (is_available_.load()) {if (is_now) {this->is_shutdown_now_.store(true);} else {this->is_shutdown_.store(true);}this->task_cv_.notify_all();is_available_.store(false);}}
为线程池添加线程
见AddThread()函数,默认会创建Core线程,也可以选择创建Cache线程,线程内部会有一个死循环,不停的等待任务,有任务到来时就会执行,同时内部会判断是否是Cache线程,如果是Cache线程,timeout时间内没有任务执行就会自动退出循环,线程结束。
这里还会检查is_shutdown和isshutdown_now标志,根据两个标志位是否为true来判断是否结束线程。
void AddThread(int id) { AddThread(id, ThreadFlag::kCore); }void AddThread(int id, ThreadFlag thread_flag) {cout << "AddThread " << id << " flag " << static_cast<int>(thread_flag) << endl;ThreadWrapperPtr thread_ptr = std::make_shared<ThreadWrapper>();thread_ptr->id.store(id);thread_ptr->flag.store(thread_flag);auto func = [this, thread_ptr]() {for (;;) {std::function<void()> task;{ThreadPoolLock lock(this->task_mutex_);if (thread_ptr->state.load() == ThreadState::kStop) {break;}cout << "thread id " << thread_ptr->id.load() << " running start" << endl;thread_ptr->state.store(ThreadState::kWaiting);++this->waiting_thread_num_;bool is_timeout = false;if (thread_ptr->flag.load() == ThreadFlag::kCore) {this->task_cv_.wait(lock, [this, thread_ptr] {return (this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() ||thread_ptr->state.load() == ThreadState::kStop);});} else {this->task_cv_.wait_for(lock, this->config_.time_out, [this, thread_ptr] {return (this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() ||thread_ptr->state.load() == ThreadState::kStop);});is_timeout = !(this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() ||thread_ptr->state.load() == ThreadState::kStop);}--this->waiting_thread_num_;cout << "thread id " << thread_ptr->id.load() << " running wait end" << endl;if (is_timeout) {thread_ptr->state.store(ThreadState::kStop);}if (thread_ptr->state.load() == ThreadState::kStop) {cout << "thread id " << thread_ptr->id.load() << " state stop" << endl;break;}if (this->is_shutdown_ && this->tasks_.empty()) {cout << "thread id " << thread_ptr->id.load() << " shutdown" << endl;break;}if (this->is_shutdown_now_) {cout << "thread id " << thread_ptr->id.load() << " shutdown now" << endl;break;}thread_ptr->state.store(ThreadState::kRunning);task = std::move(this->tasks_.front());this->tasks_.pop();}task();}cout << "thread id " << thread_ptr->id.load() << " running end" << endl;};thread_ptr->ptr = std::make_shared<std::thread>(std::move(func));if (thread_ptr->ptr->joinable()) {thread_ptr->ptr->detach();}this->worker_threads_.emplace_back(std::move(thread_ptr));}
将任务放入线程池中执行
见如下代码,将任务使用std::bind封装成std::function放入任务队列中,任务较多时内部还会判断是否有空闲线程,如果没有空闲线程,会自动创建出最多(max_threads-core_threads)个Cache线程用于执行任务。
// 放在线程池中执行函数template <typename F, typename... Args>auto Run(F &&f, Args &&... args) -> std::shared_ptr<std::future<std::result_of_t<F(Args...)>>> {if (this->is_shutdown_.load() || this->is_shutdown_now_.load() || !IsAvailable()) {return nullptr;}if (GetWaitingThreadSize() == 0 && GetTotalThreadSize() < config_.max_threads) {AddThread(GetNextThreadId(), ThreadFlag::kCache);}using return_type = std::result_of_t<F(Args...)>;auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(std::forward<F>(f), std::forward<Args>(args)...));total_function_num_++;std::future<return_type> res = task->get_future();{ThreadPoolLock lock(this->task_mutex_);this->tasks_.emplace([task]() { (*task)(); });}this->task_cv_.notify_one();return std::make_shared<std::future<std::result_of_t<F(Args...)>>>(std::move(res));}
获取当前线程池中线程的总个数
int GetTotalThreadSize() { return this->worker_threads_.size(); }
获取当前线程池中空闲线程的个数
waitingthread_num值表示空闲线程的个数,该变量在线程循环内部会更新。
int GetWaitingThreadSize() { return this->waiting_thread_num_.load(); }
简单的测试代码
int main() {cout << "hello" << endl;ThreadPool pool(ThreadPool::ThreadPoolConfig{4, 5, 6, std::chrono::seconds(4)});pool.Start();std::this_thread::sleep_for(std::chrono::seconds(4));cout << "thread size " << pool.GetTotalThreadSize() << endl;std::atomic<int> index;index.store(0);std::thread t([&]() {for (int i = 0; i < 10; ++i) {pool.Run([&]() {cout << "function " << index.load() << endl;std::this_thread::sleep_for(std::chrono::seconds(4));index++;});// std::this_thread::sleep_for(std::chrono::seconds(2));}});t.detach();cout << "=================" << endl;std::this_thread::sleep_for(std::chrono::seconds(4));pool.Reset(ThreadPool::ThreadPoolConfig{4, 4, 6, std::chrono::seconds(4)});std::this_thread::sleep_for(std::chrono::seconds(4));cout << "thread size " << pool.GetTotalThreadSize() << endl;cout << "waiting size " << pool.GetWaitingThreadSize() << endl;cout << "---------------" << endl;pool.ShutDownNow();getchar();cout << "world" << endl;return 0;}
