1.
2. jdk8
2.1 重要的属性与内部类
// 当初始化或扩容完成后,下一次扩容的阈值大小// 默认为0;初始化时,为-1;扩容时,为-(1+扩容线程数)private transient volatile int sizeCtl;// 整个concurrentHashmap就是一个 node[] 数组static class Node<K,V> implements Map.Entry<K,V> { }// hash表transient volatile Node<K,V>[] table;// 扩容时的新hash表private transient volatile Node<K,V>[] nextTable;// 扩容时如果整个bin迁移完毕,用ForwardingNode作为旧table bin的头结点(做个标记)static final class ForwardingNode<K,V> extends Node<K,V> {}// 用在compute以及conputeIfAbsent时,用来占位,计算完成后替换为普通Nodestatic final class ReservationNode<K,V> extends Node<K,V> { }// 作为treebin的头结点,存储root和first(红黑树)static final class TreeBin<K,V> extends Node<K,V> { }// 作为treebin的结点,存储parent ,left, right(红黑树)static final class TreeNode<K,V> extends Node<K,V> { }// 获取node[]中第i个nodestatic final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { }// cas修改node[]中第i个node的值,c为旧值,v为新值static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,Node<K,V> c, Node<K,V> v) { }// 直接修改node[]中第i个node的值,v为新值static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { }
2.2 构造方法
懒惰初始化,构造房中仅仅计算了table的大小,以后在第一次使用时才会真正创建
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (initialCapacity < concurrencyLevel) // Use at least as many binsinitialCapacity = concurrencyLevel; // as estimated threadslong size = (long)(1.0 + (long)initialCapacity / loadFactor);// 2的幂次方int cap = (size >= (long)MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : tableSizeFor((int)size);this.sizeCtl = cap;}
2.3 get方法
- 计算hash值,定位到该table索引位置,如果是首节点符合就返回
- 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
- 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;// spread方法保证返回结果是正数int h = spread(key.hashCode());// table 不为空 && 长度>0 && 当前数组位置有元素if ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {// 如果头结点e的hash是已经要找的key,就判断内容是否相等if ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}// 如果e的hash为负数表示改bin在扩容中(扩容的ForwardingNode就是-1)在新table中找,// 或者是treebin(-2),这时调用find方法查找else if (eh < 0)return (p = e.find(h, key)) != null ? p.val : null;// 正常遍历链表while ((e = e.next) != null) {if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;}
2.4 put方法
public V put(K key, V value) {return putVal(key, value, false);}
// onlyIfAbsent值表示遇到相同的key是否用新值代替旧值(false就是代替,true就是不代替)final V putVal(K key, V value, boolean onlyIfAbsent) {// 不允许有null的键值对if (key == null || value == null) throw new NullPointerException();// 保证key的hashcode为正数int hash = spread(key.hashCode());int binCount = 0;// 死循环for (Node<K,V>[] tab = table;;) {// f是链表头结点,fh是链表头结点的hash,i是链表在table中的下标Node<K,V> f; int n, i, fh;// table为null,创建tableif (tab == null || (n = tab.length) == 0)// 初始化table使用cas,无需synchronized,创建成功,进入下一轮循环tab = initTable();// 否则,查看该位置index是否是null的,如果是创建链表头结点else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 添加链表头使用cas,无需synchronizedif (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))// 成功就break,失败就继续循环break; // no lock when adding to empty bin}// 头结点不为null// 帮忙扩容,看这个节点是不是forwardNode,如果是,就知道别的线程正在扩容else if ((fh = f.hash) == MOVED)// 帮忙扩容,进行下一轮循环tab = helpTransfer(tab, f);else {// 正式扩容V oldVal = null;// 锁住链表头结点synchronized (f) {// 再次确认链表头节点没有被移动if (tabAt(tab, i) == f) {// 链表if (fh >= 0) {// 链表长度,初始值为1binCount = 1;// 遍历链表for (Node<K,V> e = f;; ++binCount) {K ek;// 找到相同的keyif (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;// 更新并breakif (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;// 最后一个节点,新增node,追加至链表尾部if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}// 红黑树节点else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;// putTreeVal会看key是否已经在树中,是的话返回对应的treeNodeif ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}// 释放头结点的锁}// 树化if (binCount != 0) {// 如果链表长度 >= 树化阈值(8),链表转换成红黑树(总数组长度>=64才转换,不然就扩容)if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}// 增加size计数,多个累加单元进行计数。addCount(1L, binCount);return null;}
initTable方法
private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;// 没有被创建while ((tab = table) == null || tab.length == 0) {// 让其他线程yield,节约资源if ((sc = sizeCtl) < 0)Thread.yield(); // lost initialization race; just spin// 尝试将 sizeCtl设置为-1,表示初始化else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {// 获得锁,创建table,这是其他线程cas失败会在while中yield直至table创建try {// 确认没有创建if ((tab = table) == null || tab.length == 0) {// sc是初始容量,没有给就用默认值16int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = tab = nt;// 下次扩容时的阈值sc = n - (n >>> 2);}} finally {// 恢复成正数,使其他忙等待的线程进入compareAndSwapInt比较,此时sc的值改变了,就退出来了sizeCtl = sc;}break;}}return tab;}
addCount方法
// check 是之前binCount的个数private final void addCount(long x, int check) {CounterCell[] as; long b, s;// 累加单元数组不为null,已经有了,向cell累加if ((as = counterCells) != null ||// 还没有,向baseCount累加!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {// 累加失败了CounterCell a; long v; int m;boolean uncontended = true;// 还没有counterCellsif (as == null || (m = as.length - 1) < 0 ||// 还没有cell(a = as[ThreadLocalRandom.getProbe() & m]) == null ||// cell cas增加计数失败!(uncontended =U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {// 创建累加单元数组和cell,累加重试fullAddCount(x, uncontended);return;}// 检查链表长度if (check <= 1)return;// 获取元素个数s = sumCount();}if (check >= 0) {Node<K,V>[] tab, nt; int n, sc;while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {int rs = resizeStamp(n);// sc改成-1,扩容标识if (sc < 0) {if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;// newtable已经创建了,帮忙扩容if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))transfer(tab, nt);}// 需要扩容,这时newtable未创建(懒惰初始化)else if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))transfer(tab, null);s = sumCount();}}}
2.5 size计算流程
size计算实际发生在put、remove改变集合元素的操作之中
- 没有竞争发生时,向baseCount累加计数
- 有竞争发生,新建counterCells,向其中一个cell累加计数
- counterCells初始有两个cell
- 如果计数竞争比较激烈,会创建新的cell来累加计数
- 注意:size计数结果有一定误差,多线程条件下,容易出现误差。
```java
public int size() {
}long n = sumCount();return ((n < 0L) ? 0 :(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :(int)n);
final long sumCount() { CounterCell[] as = counterCells; CounterCell a; long sum = baseCount; // 将baseCount与所有cell计数累加 if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
<a name="H4xsb"></a>## 2.6 transfer扩容```javaprivate final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {int n = tab.length, stride;if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)stride = MIN_TRANSFER_STRIDE; // subdivide range// 初始化新tableif (nextTab == null) { // initiatingtry {@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];nextTab = nt;} catch (Throwable ex) { // try to cope with OOMEsizeCtl = Integer.MAX_VALUE;return;}nextTable = nextTab;transferIndex = n;}// 移动数据int nextn = nextTab.length;ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);boolean advance = true;boolean finishing = false; // to ensure sweep before committing nextTabfor (int i = 0, bound = 0;;) {Node<K,V> f; int fh;while (advance) {int nextIndex, nextBound;if (--i >= bound || finishing)advance = false;else if ((nextIndex = transferIndex) <= 0) {i = -1;advance = false;}else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,nextBound = (nextIndex > stride ?nextIndex - stride : 0))) {bound = nextBound;i = nextIndex - 1;advance = false;}}if (i < 0 || i >= n || i + n >= nextn) {int sc;if (finishing) {nextTable = null;table = nextTab;sizeCtl = (n << 1) - (n >>> 1);return;}if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)return;finishing = advance = true;i = n; // recheck before commit}}// 链表头是null,说明处理完了,就把他替换成ForwardingNodeelse if ((f = tabAt(tab, i)) == null)advance = casTabAt(tab, i, null, fwd);// 如果已经是ForwardingNode,就处理下一个链表else if ((fh = f.hash) == MOVED))advance = true; // already processedelse {// 链表头有元素,锁住链表synchronized (f) {//if (tabAt(tab, i) == f) {Node<K,V> ln, hn;// 普通节点,转移节点类似hashmap里的,高位低位链表转移if (fh >= 0) {int runBit = fh & n;Node<K,V> lastRun = f;for (Node<K,V> p = f.next; p != null; p = p.next) {int b = p.hash & n;if (b != runBit) {runBit = b;lastRun = p;}}if (runBit == 0) {ln = lastRun;hn = null;}else {hn = lastRun;ln = null;}for (Node<K,V> p = f; p != lastRun; p = p.next) {int ph = p.hash; K pk = p.key; V pv = p.val;if ((ph & n) == 0)ln = new Node<K,V>(ph, pk, pv, ln);elsehn = new Node<K,V>(ph, pk, pv, hn);}setTabAt(nextTab, i, ln);setTabAt(nextTab, i + n, hn);setTabAt(tab, i, fwd);advance = true;}// 红黑树,类似hashmap里面的红黑树转移,隐藏的双向链表,高低位链表转移else if (f instanceof TreeBin) {TreeBin<K,V> t = (TreeBin<K,V>)f;TreeNode<K,V> lo = null, loTail = null;TreeNode<K,V> hi = null, hiTail = null;int lc = 0, hc = 0;for (Node<K,V> e = t.first; e != null; e = e.next) {int h = e.hash;TreeNode<K,V> p = new TreeNode<K,V>(h, e.key, e.val, null, null);if ((h & n) == 0) {if ((p.prev = loTail) == null)lo = p;elseloTail.next = p;loTail = p;++lc;}else {if ((p.prev = hiTail) == null)hi = p;elsehiTail.next = p;hiTail = p;++hc;}}ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :(hc != 0) ? new TreeBin<K,V>(lo) : t;hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :(lc != 0) ? new TreeBin<K,V>(hi) : t;setTabAt(nextTab, i, ln);setTabAt(nextTab, i + n, hn);setTabAt(tab, i, fwd);advance = true;}}}}}}
