"""dense net in pytorch"""import torchimport torch.nn as nnclass Bottleneck(nn.Module): def __init__(self, in_channels, growth_rate): super().__init__() inner_channel = 4 * growth_rate self.bottle_neck = nn.Sequential( nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, inner_channel, kernel_size=1, bias=False), nn.BatchNorm2d(inner_channel), nn.ReLU(inplace=True), nn.Conv2d(inner_channel, growth_rate, kernel_size=3, padding=1, bias=False) ) def forward(self, x): return torch.cat([x, self.bottle_neck(x)], 1)class Transition(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.down_sample = nn.Sequential( nn.BatchNorm2d(in_channels), nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.AvgPool2d(2, stride=2) ) def forward(self, x): return self.down_sample(x)class DenseNet(nn.Module): def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_class=100): super().__init__() self.growth_rate = growth_rate #扩张率设为32 inner_channels = 2 * growth_rate #将通道数扩张为64 self.conv1 = nn.Conv2d(3, inner_channels, kernel_size=3, padding=1, bias=False) self.features = nn.Sequential() for index in range(len(nblocks) - 1): self.features.add_module("dense_block_layer_{}".format(index), self._make_dense_layers(block, inner_channels, nblocks[index])) inner_channels += growth_rate * nblocks[index] out_channels = int(reduction * inner_channels) # int() will automatic floor the value self.features.add_module("transition_layer_{}".format(index), Transition(inner_channels, out_channels)) inner_channels = out_channels self.features.add_module("dense_block{}".format(len(nblocks) - 1), self._make_dense_layers(block, inner_channels, nblocks[len(nblocks)-1])) inner_channels += growth_rate * nblocks[len(nblocks) - 1] self.features.add_module('bn', nn.BatchNorm2d(inner_channels)) self.features.add_module('relu', nn.ReLU(inplace=True)) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.linear = nn.Linear(inner_channels, num_class) def forward(self, x): output = self.conv1(x)#64, 32, 32 output = self.features(output) output = self.avgpool(output) output = output.view(output.size()[0], -1) output = self.linear(output) return output def _make_dense_layers(self, block, in_channels, nblocks): dense_block = nn.Sequential() for index in range(nblocks): dense_block.add_module('bottle_neck_layer_{}'.format(index), block(in_channels, self.growth_rate)) in_channels += self.growth_rate return dense_blockdef densenet121(): return DenseNet(Bottleneck, [6,12,24,16], growth_rate=32)def densenet169(): return DenseNet(Bottleneck, [6,12,32,32], growth_rate=32)def densenet201(): return DenseNet(Bottleneck, [6,12,48,32], growth_rate=32)def densenet161(): return DenseNet(Bottleneck, [6,12,36,24], growth_rate=48)