x = torch.randn(1, 3, 416, 416)input_names = ["input"]out_names = ["output"]INPUT_DICT = ""#pth模型路径OUT_ONNX = ""#onnx模型路径#定义网络结构model = Network()#加载参数model_dict = model.state_dict()pretrained_dict = torch.load(INPUT_DICT, map_location=torch.device('cpu'))pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}model_dict.update(pretrained_dict)model.load_state_dict(model_dict)#gpu# if torch.cuda.device_count() > 1:# print("let's use", torch.cuda.device_count(), "Gpus!")# model = DataParallel(model)model.eval()torch.onnx.export(model, x, OUT_ONNX, export_params=True, training=False, input_names=input_names, output_names=out_names, opset_version=11,do_constant_folding=False)#print('please run: python3 -m onnxsim test.onnx ?test_sim.onnx\n')#??????????????????????????????????????print('convert done!\n')