一、Loss函数
#----------------------------------------------------# # l代表的是,当前输入进来的有效特征层,是第几个有效特征层 # input的shape为 bs, 3*(5+num_classes), 13, 13 # bs, 3*(5+num_classes), 26, 26 # bs, 3*(5+num_classes), 52, 52 # targets代表的是真实框。 #----------------------------------------------------# #--------------------------------# # 获得图片数量,特征层的高和宽 # 13和13 #--------------------------------# bs = input.size(0) in_h = input.size(2) in_w = input.size(3) #-----------------------------------------------------------------------# # 计算步长 # 每一个特征点对应原来的图片上多少个像素点 # 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点 # 如果特征层为26x26的话,一个特征点就对应原来的图片上的16个像素点 # 如果特征层为52x52的话,一个特征点就对应原来的图片上的8个像素点 # stride_h = stride_w = 32、16、8 # stride_h和stride_w都是32。 #-----------------------------------------------------------------------# stride_h = self.input_shape[0] / in_h stride_w = self.input_shape[1] / in_w #-------------------------------------------------# # 此时获得的scaled_anchors大小是相对于特征层的 #-------------------------------------------------# scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors] #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # bs, 3*(5+num_classes), 13, 13 => batch_size, 3, 13, 13, 5 + num_classes # batch_size, 3, 26, 26, 5 + num_classes # batch_size, 3, 52, 52, 5 + num_classes #-----------------------------------------------# prediction = input.view(bs, len(self.anchors_mask[l]), self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous() #-----------------------------------------------# # 先验框的中心位置的调整参数 #-----------------------------------------------# x = torch.sigmoid(prediction[..., 0]) y = torch.sigmoid(prediction[..., 1]) #-----------------------------------------------# # 先验框的宽高调整参数 #-----------------------------------------------# w = prediction[..., 2] h = prediction[..., 3] #-----------------------------------------------# # 获得置信度,是否有物体 #-----------------------------------------------# conf = torch.sigmoid(prediction[..., 4]) #-----------------------------------------------# # 种类置信度 #-----------------------------------------------# pred_cls = torch.sigmoid(prediction[..., 5:]) #-----------------------------------------------# # 获得网络应该有的预测结果 #-----------------------------------------------# y_true, noobj_mask, box_loss_scale = self.get_target(l, targets, scaled_anchors, in_h, in_w) #---------------------------------------------------------------# # 将预测结果进行解码,判断预测结果和真实值的重合程度 # 如果重合程度过大则忽略,因为这些特征点属于预测比较准确的特征点 # 作为负样本不合适 #----------------------------------------------------------------# noobj_mask, pred_boxes = self.get_ignore(l, x, y, h, w, targets, scaled_anchors, in_h, in_w, noobj_mask) if self.cuda: y_true = y_true.type_as(x) noobj_mask = noobj_mask.type_as(x) box_loss_scale = box_loss_scale.type_as(x) #--------------------------------------------------------------------------# # box_loss_scale是真实框宽高的乘积,宽高均在0-1之间,因此乘积也在0-1之间。 # 2-宽高的乘积代表真实框越大,比重越小,小框的比重更大。 #--------------------------------------------------------------------------# box_loss_scale = 2 - box_loss_scale loss = 0 obj_mask = y_true[..., 4] == 1 n = torch.sum(obj_mask) if n != 0: if self.giou: #---------------------------------------------------------------# # 计算预测结果和真实结果的giou #----------------------------------------------------------------# giou = self.box_giou(pred_boxes, y_true[..., :4]).type_as(x) loss_loc = torch.mean((1 - giou)[obj_mask]) else: #-----------------------------------------------------------# # 计算中心偏移情况的loss,使用BCELoss效果好一些 #-----------------------------------------------------------# loss_x = torch.mean(self.BCELoss(x[obj_mask], y_true[..., 0][obj_mask]) * box_loss_scale[obj_mask]) loss_y = torch.mean(self.BCELoss(y[obj_mask], y_true[..., 1][obj_mask]) * box_loss_scale[obj_mask]) #-----------------------------------------------------------# # 计算宽高调整值的loss #-----------------------------------------------------------# loss_w = torch.mean(self.MSELoss(w[obj_mask], y_true[..., 2][obj_mask]) * box_loss_scale[obj_mask]) loss_h = torch.mean(self.MSELoss(h[obj_mask], y_true[..., 3][obj_mask]) * box_loss_scale[obj_mask]) loss_loc = (loss_x + loss_y + loss_h + loss_w) * 0.1 loss_cls = torch.mean(self.BCELoss(pred_cls[obj_mask], y_true[..., 5:][obj_mask])) loss += loss_loc * self.box_ratio + loss_cls * self.cls_ratio loss_conf = torch.mean(self.BCELoss(conf, obj_mask.type_as(conf))[noobj_mask.bool() | obj_mask]) loss += loss_conf * self.balance[l] * self.obj_ratio # if n != 0: # print(loss_loc * self.box_ratio, loss_cls * self.cls_ratio, loss_conf * self.balance[l] * self.obj_ratio) return loss
二、获取正样本
def get_target(self, l, targets, anchors, in_h, in_w): #targets = [中心点x,中心点y,宽,高]/416(归一化处理过) #in_h,in_w为输入特征层的尺寸 #-----------------------------------------------------# # 计算一共有多少张图片 #-----------------------------------------------------# bs = len(targets) #-----------------------------------------------------# # 初始化矩阵,用于存放不包含物体的先验框(b, 3, 13, 13) # 每个网格有三个先验框 #-----------------------------------------------------# noobj_mask = torch.ones(bs, len(self.anchors_mask[l]), in_h, in_w, requires_grad = False) #-----------------------------------------------------# # 存放目标大小相对于原图的比例,当做加权系数 #-----------------------------------------------------# box_loss_scale = torch.zeros(bs, len(self.anchors_mask[l]), in_h, in_w, requires_grad = False) #-----------------------------------------------------# # batch_size, 3, 13, 13, 5 + num_classes #-----------------------------------------------------# y_true = torch.zeros(bs, len(self.anchors_mask[l]), in_h, in_w, self.bbox_attrs, requires_grad = False) for b in range(bs): if len(targets[b])==0: continue #用于存放一张图片中物体的信息 batch_target = torch.zeros_like(targets[b]) #-------------------------------------------------------# # 计算出真实框在特征层上的中心点 #-------------------------------------------------------# batch_target[:, [0,2]] = targets[b][:, [0,2]] * in_w batch_target[:, [1,3]] = targets[b][:, [1,3]] * in_h batch_target[:, 4] = targets[b][:, 4] batch_target = batch_target.cpu() #-------------------------------------------------------# # 将真实框转换一个形式 # 相当于(0,0,w,h),方便后面计算相当于远点的左上角右下角坐标 # num_true_box, 4 #-------------------------------------------------------# gt_box = torch.FloatTensor(torch.cat((torch.zeros((batch_target.size(0), 2)), batch_target[:, 2:4]), 1)) #-------------------------------------------------------# # 将先验框转换一个形式 # 每个像素点有 # 6, 4 #-------------------------------------------------------# anchor_shapes = torch.FloatTensor(torch.cat((torch.zeros((len(anchors), 2)), torch.FloatTensor(anchors)), 1)) #-------------------------------------------------------# # 计算交并比 # self.calculate_iou(gt_box, anchor_shapes) = [num_true_box, 9]每一个真实框和9个先验框的重合情况 # best_ns: # [每个真实框最大的重合度max_iou, 每一个真实框最重合的先验框的序号] #-------------------------------------------------------# best_ns = torch.argmax(self.calculate_iou(gt_box, anchor_shapes), dim=-1) for t, best_n in enumerate(best_ns): #判断重合度最大的框框是否属于当前特征层 #因为计算iou的时候计算了三个特征层的9个框框, if best_n not in self.anchors_mask[l]: continue #----------------------------------------# # 判断这个先验框是当前特征点的哪一个先验框 #----------------------------------------# k = self.anchors_mask[l].index(best_n) #----------------------------------------# # 获得真实框属于哪个网格点 #----------------------------------------# i = torch.floor(batch_target[t, 0]).long()#中心点x坐标 j = torch.floor(batch_target[t, 1]).long()#中心点y坐标 #----------------------------------------# # 取出真实框的种类 #----------------------------------------# c = batch_target[t, 4].long() #----------------------------------------# # noobj_mask代表无目标的特征点,无目标为1,有目标的为0 #----------------------------------------# noobj_mask[b, k, j, i] = 0 #----------------------------------------# # tx、ty代表第7个目标的中心调整参数的真实值 #----------------------------------------# if not self.giou: #----------------------------------------# # tx、ty代表中心调整参数的真实值 #----------------------------------------# y_true[b, k, j, i, 0] = batch_target[t, 0] - i.float() y_true[b, k, j, i, 1] = batch_target[t, 1] - j.float() y_true[b, k, j, i, 2] = math.log(batch_target[t, 2] / anchors[best_n][0]) y_true[b, k, j, i, 3] = math.log(batch_target[t, 3] / anchors[best_n][1]) y_true[b, k, j, i, 4] = 1 y_true[b, k, j, i, c + 5] = 1 else: #----------------------------------------# # tx、ty代表中心调整参数的真实值 #----------------------------------------# y_true[b, k, j, i, 0] = batch_target[t, 0] y_true[b, k, j, i, 1] = batch_target[t, 1] y_true[b, k, j, i, 2] = batch_target[t, 2] y_true[b, k, j, i, 3] = batch_target[t, 3] y_true[b, k, j, i, 4] = 1 y_true[b, k, j, i, c + 5] = 1 #----------------------------------------# # 用于获得xywh的比例 # 大目标loss权重小,小目标loss权重大 # 真实框面积/整张图片的面积 #----------------------------------------# box_loss_scale[b, k, j, i] = batch_target[t, 2] * batch_target[t, 3] / in_w / in_h return y_true, noobj_mask, box_loss_scale
三、计算真实框和先验框的IOU
def calculate_iou(self, _box_a, _box_b): #-----------------------------------------------------------# # 计算真实框的左上角和右下角 #-----------------------------------------------------------# b1_x1, b1_x2 = _box_a[:, 0] - _box_a[:, 2] / 2, _box_a[:, 0] + _box_a[:, 2] / 2 b1_y1, b1_y2 = _box_a[:, 1] - _box_a[:, 3] / 2, _box_a[:, 1] + _box_a[:, 3] / 2 #-----------------------------------------------------------# # 计算先验框获得的预测框的左上角和右下角 #-----------------------------------------------------------# b2_x1, b2_x2 = _box_b[:, 0] - _box_b[:, 2] / 2, _box_b[:, 0] + _box_b[:, 2] / 2 b2_y1, b2_y2 = _box_b[:, 1] - _box_b[:, 3] / 2, _box_b[:, 1] + _box_b[:, 3] / 2 #-----------------------------------------------------------# # 将真实框和预测框都转化成左上角右下角的形式 #-----------------------------------------------------------# box_a = torch.zeros_like(_box_a) box_b = torch.zeros_like(_box_b) box_a[:, 0], box_a[:, 1], box_a[:, 2], box_a[:, 3] = b1_x1, b1_y1, b1_x2, b1_y2 box_b[:, 0], box_b[:, 1], box_b[:, 2], box_b[:, 3] = b2_x1, b2_y1, b2_x2, b2_y2 #-----------------------------------------------------------# # A为真实框的数量,B为先验框的数量 #-----------------------------------------------------------# A = box_a.size(0)#1 B = box_b.size(0)#9 #-----------------------------------------------------------# # 计算交的面积 # 先将真实框维度[A,2]扩展为[A,B,2],预测框[B,2]扩展为[A,B,2] # 计算每个真实框和九个先验框的IOU #-----------------------------------------------------------# #交集右下角坐标 max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) #交集左上角坐标 min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) inter = torch.clamp((max_xy - min_xy), min=0) #交集的宽x高 inter = inter[:, :, 0] * inter[:, :, 1] #-----------------------------------------------------------# # 计算预测框和真实框各自的面积 # (x2-x1)*(y2-y1) 计算出面积后扩展为交集的维度(交集为真实框和所有先验框的交集) #-----------------------------------------------------------# area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] #-----------------------------------------------------------# # 求IOU #-----------------------------------------------------------# union = area_a + area_b - inter return inter / union # [A,B]
四、获取负样本
def get_ignore(self, l, x, y, h, w, targets, scaled_anchors, in_h, in_w, noobj_mask): #-----------------------------------------------------# # 计算一共有多少张图片 #-----------------------------------------------------# bs = len(targets) #-----------------------------------------------------# # 生成网格,先验框中心,网格左上角 #-----------------------------------------------------# grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_h, 1).repeat( int(bs * len(self.anchors_mask[l])), 1, 1).view(x.shape).type_as(x) grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_w, 1).t().repeat( int(bs * len(self.anchors_mask[l])), 1, 1).view(y.shape).type_as(x) # 生成当前特征层先验框的宽高 scaled_anchors_l = np.array(scaled_anchors)[self.anchors_mask[l]] anchor_w = torch.Tensor(scaled_anchors_l).index_select(1, torch.LongTensor([0])).type_as(x) anchor_h = torch.Tensor(scaled_anchors_l).index_select(1, torch.LongTensor([1])).type_as(x) # 生成当前特征层每个网格的先验框 anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape) anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape) #-------------------------------------------------------# # 计算调整后的预测框中心与宽高(根据yolo的方式进行解码) #-------------------------------------------------------# pred_boxes_x = torch.unsqueeze(x + grid_x, -1) pred_boxes_y = torch.unsqueeze(y + grid_y, -1) pred_boxes_w = torch.unsqueeze(torch.exp(w) * anchor_w, -1) pred_boxes_h = torch.unsqueeze(torch.exp(h) * anchor_h, -1) pred_boxes = torch.cat([pred_boxes_x, pred_boxes_y, pred_boxes_w, pred_boxes_h], dim = -1) for b in range(bs): #-------------------------------------------------------# # 将预测结果转换一个形式 # pred_boxes_for_ignore num_anchors, 4 #-------------------------------------------------------# pred_boxes_for_ignore = pred_boxes[b].view(-1, 4) #-------------------------------------------------------# # 计算真实框,并把真实框转换成相对于特征层的大小 # gt_box num_true_box, 4 #-------------------------------------------------------# if len(targets[b]) > 0: batch_target = torch.zeros_like(targets[b]) #-------------------------------------------------------# # 计算出正样本在特征层上的中心点 #-------------------------------------------------------# batch_target[:, [0,2]] = targets[b][:, [0,2]] * in_w batch_target[:, [1,3]] = targets[b][:, [1,3]] * in_h batch_target = batch_target[:, :4].type_as(x) #-------------------------------------------------------# # 计算交并比 # anch_ious num_true_box, num_anchors #-------------------------------------------------------# anch_ious = self.calculate_iou(batch_target, pred_boxes_for_ignore) #-------------------------------------------------------# # 每个先验框对应真实框的最大重合度 # anch_ious_max num_anchors #-------------------------------------------------------# #返回最大元素在这一列的行索引 anch_ious_max, _ = torch.max(anch_ious, dim = 0) anch_ious_max = anch_ious_max.view(pred_boxes[b].size()[:3]) #重合度大于阈值的置零(不适合作为负样本) noobj_mask[b][anch_ious_max > self.ignore_threshold] = 0 return noobj_mask, pred_boxes
五、GIOU计算
def box_giou(self, b1, b2): """ 输入为: ---------- b1: tensor, shape=(batch, anchor_num, feat_w, feat_h, 4), xywh b2: tensor, shape=(batch, anchor_num, feat_w, feat_h, 4), xywh 返回为: ------- giou: tensor, shape=(batch, anchor_num, feat_w, feat_h, 1) """ #----------------------------------------------------# # 求出预测框左上角右下角 #----------------------------------------------------# b1_xy = b1[..., :2] b1_wh = b1[..., 2:4] b1_wh_half = b1_wh/2. b1_mins = b1_xy - b1_wh_half #左上角xy坐标 b1_maxes = b1_xy + b1_wh_half #右下角xy坐标 #----------------------------------------------------# # 求出真实框左上角右下角 #----------------------------------------------------# b2_xy = b2[..., :2] b2_wh = b2[..., 2:4] b2_wh_half = b2_wh/2. b2_mins = b2_xy - b2_wh_half b2_maxes = b2_xy + b2_wh_half #----------------------------------------------------# # 求真实框和预测框所有的iou #----------------------------------------------------# intersect_mins = torch.max(b1_mins, b2_mins) intersect_maxes = torch.min(b1_maxes, b2_maxes) intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes)) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] b1_area = b1_wh[..., 0] * b1_wh[..., 1] b2_area = b2_wh[..., 0] * b2_wh[..., 1] union_area = b1_area + b2_area - intersect_area iou = intersect_area / union_area #----------------------------------------------------# # 找到包裹两个框的最小框的左上角和右下角 #----------------------------------------------------# enclose_mins = torch.min(b1_mins, b2_mins) enclose_maxes = torch.max(b1_maxes, b2_maxes) enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes)) #----------------------------------------------------# # 计算对角线距离 #----------------------------------------------------# enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] giou = iou - (enclose_area - union_area) / enclose_area return giou
六、BCEloss(二分类交叉熵函数)

def BCELoss(self, pred, target): epsilon = 1e-7 pred = self.clip_by_tensor(pred, epsilon, 1.0 - epsilon) output = - target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred) return outputdef clip_by_tensor(self, t, t_min, t_max): t = t.float() result = (t >= t_min).float() * t + (t < t_min).float() * t_min result = (result <= t_max).float() * result + (result > t_max).float() * t_max return result