https://www.yuque.com/baifayuqiao-icncm/ebvxz3/gvmqtp#ibfq8

一级缓存

在应用运行过程中,我们有可能在一次数据库会话中,执行多次查询条件完全相同的SQL,MyBatis提供了一级缓存的方案优化这部分场景,如果是相同的SQL语句,会优先命中一级缓存,避免直接对数据库进行查询,提高性能。具体执行过程如下图所示。
image.png
每个SqlSession中持有了Executor,每个Executor中有一个LocalCache。当用户发起查询时,MyBatis根据当前执行的语句生成MappedStatement,在Local Cache进行查询,如果缓存命中的话,直接返回结果给用户,如果缓存没有命中的话,查询数据库,结果写入Local Cache,最后返回结果给用户。具体实现类的类关系图如下图所示。
image.png

一级缓存配置

只需在MyBatis的配置文件中,添加如下语句

  1. <setting name="localCacheScope" value="SESSION"/>

共有两个选项,SESSION或者STATEMENT,默认是SESSION级别(同一个SqlSession),即在一个MyBatis会话中执行的所有语句,都会共享这一个缓存。一种是STATEMENT级别,可以理解为缓存只对当前执行的这一个Statement有效。

工作流程

一级缓存执行的时序图,如下图所示

image.png

源码分析

SqlSession: 对外提供了用户和数据库之间交互需要的所有方法,隐藏了底层的细节。默认实现类是DefaultSqlSession。
Executor: SqlSession向用户提供操作数据库的方法,但和数据库操作有关的职责都会委托给Executor。
BaseExecutor: BaseExecutor是一个实现了Executor接口的抽象类,定义若干抽象方法,在执行的时候,把具体的操作委托给BaseExecutor子类进行执行。
Cache: MyBatis中的Cache接口,提供了和缓存相关的最基本的操作

BaseExecutor成员变量之一的PerpetualCache,是对Cache接口最基本的实现,其内部持有HashMap,对一级缓存的操作实则是对HashMap的操作

为执行和数据库的交互,首先需要初始化SqlSession,通过DefaultSqlSessionFactory开启SqlSession:

private SqlSession openSessionFromDataSource(ExecutorType execType, TransactionIsolationLevel level, boolean autoCommit) {
    ............
    final Executor executor = configuration.newExecutor(tx, execType);     
    return new DefaultSqlSession(configuration, executor, autoCommit);
}

在初始化SqlSesion时,会使用Configuration类创建一个全新的Executor,作为DefaultSqlSession构造函数的参数,创建Executor代码如下所示:

public Executor newExecutor(Transaction transaction, ExecutorType executorType) {
    executorType = executorType == null ? defaultExecutorType : executorType;
    executorType = executorType == null ? ExecutorType.SIMPLE : executorType;
    Executor executor;
    if (ExecutorType.BATCH == executorType) {
      executor = new BatchExecutor(this, transaction);
    } else if (ExecutorType.REUSE == executorType) {
      executor = new ReuseExecutor(this, transaction);
    } else {
      executor = new SimpleExecutor(this, transaction);
    }
    // 尤其可以注意这里,如果二级缓存开关开启的话,是使用CahingExecutor装饰BaseExecutor的子类
    if (cacheEnabled) {
      executor = new CachingExecutor(executor);                      
    }
    executor = (Executor) interceptorChain.pluginAll(executor);
    return executor;
}

SqlSession创建完毕后,根据Statment的不同类型,会进入SqlSession的不同方法中,如果是Select语句的话,最后会执行到SqlSession的selectList

@Override
public <E> List<E> selectList(String statement, Object parameter, RowBounds rowBounds) {
      MappedStatement ms = configuration.getMappedStatement(statement);
      return executor.query(ms, wrapCollection(parameter), rowBounds, Executor.NO_RESULT_HANDLER);
}

SqlSession把具体的查询职责委托给了Executor。如果只开启了一级缓存的话,首先会进入BaseExecutor的query方法。代码如下所示:

@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
    BoundSql boundSql = ms.getBoundSql(parameter);
    CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
    return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}

CacheKey生成:将MappedStatement的Id、sql的offset、Sql的limit、Sql本身以及Sql中的参数传入了CacheKey这个类,最终构成CacheKey。

CacheKey cacheKey = new CacheKey();
cacheKey.update(ms.getId());
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
cacheKey.update(boundSql.getSql());
//后面是update了sql中带的参数
cacheKey.update(value);

在CacheKey的update方法中,会进行一个hashcode和checksum的计算,同时把传入的参数添加进updatelist中。同时也重写了equals方法

public void update(Object object) {
    int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object); 
    count++;
    checksum += baseHashCode;
    baseHashCode *= count;
    hashcode = multiplier * hashcode + baseHashCode;

    updateList.add(object);
}
@Override
public boolean equals(Object object) {
    .............
    for (int i = 0; i < updateList.size(); i++) {
      Object thisObject = updateList.get(i);
      Object thatObject = cacheKey.updateList.get(i);
      if (!ArrayUtil.equals(thisObject, thatObject)) {
        return false;
      }
    }
    return true;
}

除去hashcode,checksum和count的比较外,只要updatelist中的元素一一对应相等,那么就可以认为是CacheKey相等。只要两条SQL的下列五个值相同,即可以认为是相同的SQL。 Statement Id + Offset + Limmit + Sql + Params

BaseExecutor的query方法继续往下走,代码如下所示:

list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
    // 这个主要是处理存储过程用的。
    handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
    } else {
    list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}

如果查不到的话,就从数据库查,在queryFromDatabase中,会对localcache进行写入。
在query方法执行的最后,会判断一级缓存级别是否是STATEMENT级别,如果是的话,就清空缓存,这也就是STATEMENT级别的一级缓存无法共享localCache的原因。代码如下所示:

if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
        clearLocalCache();
}

在源码分析的最后,我们确认一下,如果是insert/delete/update方法,缓存就会刷新的原因。
SqlSession的insert方法和delete方法,都会统一走update的流程,代码如下所示:

@Override
public int insert(String statement, Object parameter) {
    return update(statement, parameter);
  }
   @Override
  public int delete(String statement) {
    return update(statement, null);
}

update方法也是委托给了Executor执行。BaseExecutor的执行方法如下所示。

@Override
public int update(MappedStatement ms, Object parameter) throws SQLException {
    ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId());
    if (closed) {
      throw new ExecutorException("Executor was closed.");
    }
    //每次执行update前都会清空localCache
    clearLocalCache();
    return doUpdate(ms, parameter);
}

总结

  1. MyBatis一级缓存的生命周期和SqlSession一致。
  2. MyBatis一级缓存内部设计简单,只是一个没有容量限定的HashMap,在缓存的功能性上有所欠缺。
  3. MyBatis的一级缓存最大范围是SqlSession内部,有多个SqlSession或者分布式的环境下,数据库写操作会引起脏数据,建议设定缓存级别为Statement。

    二级缓存

    如果多个SqlSession之间需要共享缓存,则需要使用到二级缓存。开启二级缓存后,会使用CachingExecutor装饰Executor,进入一级缓存的查询流程前,先在CachingExecutor进行二级缓存的查询,具体的工作流程如下所示。
    image.png
    二级缓存开启后,同一个namespace下的所有操作语句,都影响着同一个Cache,即二级缓存被多个SqlSession共享,是一个全局的变量。
    当开启缓存后,数据的查询执行的流程就是 二级缓存 -> 一级缓存 -> 数据库。

    二级缓存配置

    要正确的使用二级缓存,需完成如下配置的。在MyBatis的配置文件中开启二级缓存。

  4. 在MyBatis的映射XML中配置cache或者 cache-ref 。

cache标签用于声明这个namespace使用二级缓存,并且可以自定义配置。

  • type:cache使用的类型,默认是PerpetualCache,这在一级缓存中提到过。
  • eviction: 定义回收的策略,常见的有FIFO,LRU。
  • flushInterval: 配置一定时间自动刷新缓存,单位是毫秒。
  • size: 最多缓存对象的个数。
  • readOnly: 是否只读,若配置可读写,则需要对应的实体类能够序列化。
  • blocking: 若缓存中找不到对应的key,是否会一直blocking,直到有对应的数据进入缓存。
  • cache-ref:代表引用别的命名空间的Cache配置,两个命名空间的操作使用的是同一个Cache。

    MyBatis的二级缓存不适应用于映射文件中存在多表查询的情况。
    通常我们会为每个单表创建单独的映射文件,由于MyBatis的二级缓存是基于namespace的,多表查询语句所在的namspace无法感应到其他namespace中的语句对多表查询中涉及的表进行的修改,引发脏数据问题。 因此需要

源码分析

MyBatis二级缓存的工作流程和前文提到的一级缓存类似,只是在一级缓存处理前,用CachingExecutor装饰了BaseExecutor的子类,在委托具体职责给delegate之前,实现了二级缓存的查询和写入功能,具体类关系图如下图所示。image.png
CachingExecutor的query方法,首先会从MappedStatement中获得在配置初始化时赋予的Cache。

Cache cache = ms.getCache();

装饰器模式的缓存设计:SynchronizedCache -> LoggingCache -> SerializedCache -> LruCache -> PerpetualCache。

  • SynchronizedCache: 同步Cache,实现比较简单,直接使用synchronized修饰方法。
  • LoggingCache: 日志功能,装饰类,用于记录缓存的命中率,如果开启了DEBUG模式,则会输出命中率日志。
  • SerializedCache: 序列化功能,将值序列化后存到缓存中。该功能用于缓存返回一份实例的Copy,用于保存线程安全。
  • LruCache: 采用了Lru算法的Cache实现,移除最近最少使用的key/value。
  • PerpetualCache: 作为为最基础的缓存类,底层实现比较简单,直接使用了HashMap。

然后是判断是否需要刷新缓存,代码如下所示:

flushCacheIfRequired(ms);

在默认的设置中SELECT语句不会刷新缓存,insert/update/delte会刷新缓存。进入该方法。代码如下所示:

private void flushCacheIfRequired(MappedStatement ms) {
    Cache cache = ms.getCache();
    if (cache != null && ms.isFlushCacheRequired()) {      
      tcm.clear(cache);
    }
}

MyBatis的CachingExecutor持有了TransactionalCacheManager,即上述代码中的tcm。TransactionalCacheManager中持有了一个Map,代码如下所示:

private Map<Cache, TransactionalCache> transactionalCaches = new HashMap<Cache, TransactionalCache>();

这个Map保存了Cache和用TransactionalCache包装后的Cache的映射关系。
TransactionalCache实现了Cache接口,CachingExecutor会默认使用他包装初始生成的Cache,作用是如果事务提交,对缓存的操作才会生效,如果事务回滚或者不提交事务,则不对缓存产生影响。
在TransactionalCache的clear,有以下两句。清空了需要在提交时加入缓存的列表,同时设定提交时清空缓存,代码如下所示:

@Override
public void clear() {
    clearOnCommit = true;
    entriesToAddOnCommit.clear();
}

CachingExecutor继续往下走,ensureNoOutParams主要是用来处理存储过程的,暂时不用考虑。

if (ms.isUseCache() && resultHandler == null) {
    ensureNoOutParams(ms, parameterObject, boundSql);
}

之后会尝试从tcm中获取缓存的列表。

List<E> list = (List<E>) tcm.getObject(cache, key);

在getObject方法中,会把获取值的职责一路传递,最终到PerpetualCache。如果没有查到,会把key加入Miss集合,这个主要是为了统计命中率。

Object object = delegate.getObject(key);
if (object == null) {
    entriesMissedInCache.add(key);
}

CachingExecutor继续往下走,如果查询到数据,则调用tcm.putObject方法,往缓存中放入值。

if (list == null) {
    list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
    tcm.putObject(cache, key, list); // issue #578 and #116
}

tcm的put方法也不是直接操作缓存,只是在把这次的数据和key放入待提交的Map中。

@Override
public void putObject(Object key, Object object) {
    entriesToAddOnCommit.put(key, object);
}

从以上的代码分析中,我们可以明白,如果不调用commit方法的话,由于TranscationalCache的作用,并不会对二级缓存造成直接的影响。因此我们看看Sqlsession的commit方法中做了什么。代码如下所示:

@Override
public void commit(boolean force) {
    try {
      executor.commit(isCommitOrRollbackRequired(force));

因为我们使用了CachingExecutor,首先会进入CachingExecutor实现的commit方法。

@Override
public void commit(boolean required) throws SQLException {
    delegate.commit(required);
    tcm.commit();
}

会把具体commit的职责委托给包装的Executor。主要是看下tcm.commit(),tcm最终又会调用到TrancationalCache。

public void commit() {
    if (clearOnCommit) {
      delegate.clear();
    }
    flushPendingEntries();
    reset();
}

看到这里的clearOnCommit就想起刚才TrancationalCache的clear方法设置的标志位,真正的清理Cache是放到这里来进行的。具体清理的职责委托给了包装的Cache类。之后进入flushPendingEntries方法。代码如下所示:

private void flushPendingEntries() {
    for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {
      delegate.putObject(entry.getKey(), entry.getValue());
    }
    ................
}

在flushPendingEntries中,将待提交的Map进行循环处理,委托给包装的Cache类,进行putObject的操作。
后续的查询操作会重复执行这套流程。如果是insert|update|delete的话,会统一进入CachingExecutor的update方法,其中调用了这个函数,代码如下所示

private void flushCacheIfRequired(MappedStatement ms)

总结

  1. MyBatis的二级缓存相对于一级缓存来说,实现了SqlSession之间缓存数据的共享,同时粒度更加的细,能够到namespace级别,通过Cache接口实现类不同的组合,对Cache的可控性也更强。
  2. MyBatis在多表查询时,极大可能会出现脏数据,有设计上的缺陷,安全使用二级缓存的条件比较苛刻。
  3. 在分布式环境下,由于默认的MyBatis Cache实现都是基于本地的,分布式环境下必然会出现读取到脏数据,需要使用集中式缓存将MyBatis的Cache接口实现,有一定的开发成本,直接使用Redis,Memcached等分布式缓存可能成本更低,安全性也更高。