:::warning MySQL有两种方式生成有序的结果:
- 通过排序操作;
- 按照索引顺序扫描;
:::
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;
select city,name,age from t where city='杭州' order by name limit 1000;
order by查询语句如何执行的?
全字段排序
在 city 字段上创建索引之后,我们用 explain 命令来看看这个语句的执行情况。
Extra 这个字段中的Using filesort表示的就是需要排序,MySQL 会给每个线程分配一块内存用于排序,称为 sort_buffer。
- 初始化 sort_buffer,确定放入 name、city、age 这三个字段;
- 从索引 city 找到第一个满足 city=’杭州’条件的主键 id;
- 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
- 从索引 city 取下一个记录的主键 id;
- 重复步骤 3、4 直到 city 的值不满足查询条件为止;
- 对 sort_buffer 中的数据按照字段 name 做快速排序;
- 按照排序结果取前 1000 行返回给客户端。
“按 name 排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size。
sort_buffer_size,就是 MySQL 为排序开辟的内存(sort_buffer)的大小。如果要排序的数据量小于 sort_buffer_size,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。
rowid排序
在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在 sort_buffer 和临时文件中执行的。但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么 sort_buffer 里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。
SET max_length_for_sort_data = 16;
max_length_for_sort_data,是 MySQL 中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法。
新的算法放入 sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
- 初始化 sort_buffer,确定放入两个字段,即 name 和 id;
- 从索引 city 找到第一个满足 city=’杭州’条件的主键 id;
- 到主键 id 索引取出整行,取 name、id 这两个字段,存入 sort_buffer 中;
- 从索引 city 取下一个记录的主键 id;
- 重复步骤 3、4 直到不满足 city=’杭州’条件为止;
- 对 sort_buffer 中的数据按照字段 name 进行排序;
- 遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
rowid 排序多访问了一次表 t 的主键索引,就是步骤 7。
2种排序对比
如果 MySQL 实在是担心排序内存太小,会影响排序效率,才会采用 rowid 排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。
如果 MySQL 认为内存足够大,会优先选择全字段排序,把需要的字段都放到 sort_buffer 中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。
这也就体现了 MySQL 的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。
对于 InnoDB 表来说,rowid 排序会要求回表多造成磁盘读,因此不会被优先选择。
使用索引扫描进行排序
限制条件
MySQL可以使用同一个索引既满足排序,又用于查找行。
- 只有当索引的列顺序和order by子句的顺序完全一致,并且order by 子句的所有列的排序方向(正序或者倒序)都一样时,MySQL才能用索引来对结果做排序。
- 如果查询需要关联多张表,则只有当order by子句引用的字段全部是第一张表时,才能使用索引做排序。
- order by子句需要满足索引的最左前缀的要求,否则,MySQL都需要执行排序操作,而无法利用索引做排序。
- 有一种情况下order by子句可以不用满足最左前缀,那就是前导列为常量的时候。
rental_date(rental_date,inventory_id,customer_id)
上面的例子:即使order by 子句不满足索引的最左前缀的要求,也可以用于查询排序,因为索引的第一列被指定为一个常数。select rental_id, staff_id from rental where rental_date = '2022-03-18' order by inventory_id, customer_id;
原理解析
并不是所有的 order by 语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL 之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的。
如果能够保证从 city 这个索引上取出来的行,天然就是按照 name 递增排序的话,是不是就可以不用再排序了呢?
在这个市民表上创建一个 city 和 name 的联合索引:
alter table t add index city_user(city, name);
在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足 city=’杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要 city 的值是杭州,name 的值就一定是有序的。
整个查询过程的流程:
- 从索引 (city,name) 找到第一个满足 city=’杭州’条件的主键 id;
- 到主键 id 索引取出整行,取 name、city、age 三个字段的值,作为结果集的一部分直接返回;
- 从索引 (city,name) 取下一个记录主键 id;
- 重复步骤 2、3,直到查到第 1000 条记录,或者是不满足 city=’杭州’条件时循环结束。
从图中可以看到,Extra 字段中没有 Using filesort 了,也就是不需要排序了。而且由于 (city,name) 这个联合索引本身有序,所以这个查询也不用把 4000 行全都读一遍,只要找到满足条件的前 1000 条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描 1000 次。
进一步优化,可以利用覆盖索引,减少回表次数。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。
alter table t add index city_user_age(city, name, age);
这时,对于 city 字段的值相同的行来说,还是按照 name 字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:
- 从索引 (city,name,age) 找到第一个满足 city=’杭州’条件的记录,取出其中的 city、name 和 age 这三个字段的值,作为结果集的一部分直接返回;
- 从索引 (city,name,age) 取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回;
- 重复执行步骤 2,直到查到第 1000 条记录,或者是不满足 city=’杭州’条件时循环结束。
Extra 字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多。