10X cellplex

简介

cellranger-cellplex - 图1

cellplex,即Cell Multiplexing,即对每个样本的每个cell增加一个label,然后将其与其他的样本混合后通过细胞封装,建库,测序后可以通过这个label区分cell来自于哪个样本

优势:

  • 在单个实验中增加样品通量
  • 在单个实验中检测的细胞数量增加
  • 在单个实验中增加可能的重复次数
  • 在分析之前检测多重谱及其去除

分析: cellranger

使用流程为 :cellranger multi (v.6.0)Loupe6.0.0

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/multi#cmoreference

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_cp#data

Loupe: https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest#loupe

测试数据

背景: 两种cell line (JurkatRaji), 分别被两种CMO标记,混合后测序

https://www.10xgenomics.com/resources/datasets/10-k-1-1-mixture-of-raji-and-jurkat-cells-multiplexed-2-cm-os-3-1-standard-6-0-0

  • fastq
  1. https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.0.0/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_fastqs.tar
  • config file
  1. https://cf.10xgenomics.com/samples/cell-exp/6.0.0/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_config.csv
  2. https://cf.10xgenomics.com/samples/cell-exp/6.0.0/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_count_feature_reference.csv

config file

Multi Config CSV

格式:

cellranger-cellplex - 图2

具体解释

[gene-expression]部分

  • reference (R) : 参考基因组位置
  • except-cells: 期望cell数量
  • min-assignment-confidence: 通过计算Cell Multiplexing Oligo(cmo)与目标Cell Multiplexing Oligo 的相似度来过滤数据
  • cmo-set:cmo序列文件,具体格式为, (定制cmo时提供)
  1. id,name,read,pattern,sequence,feature_type
  2. CMO301,CMO301,R2,5P(BC),ATGAGGAATTCCTGC,Multiplexing Capture
  3. CMO302,CMO302,R2,5P(BC),CATGCCAATAGAGCG,Multiplexing Capture
  4. CMO303,CMO303,R2,5P(BC),CCGTCGTCCAAGCAT,Multiplexing Capture
  • target-panel: Optional. Path to a target panel CSV file or name of a 10x Genomics fixed gene panel (pathway, pan-cancer, immunology, neuroscience).
  • no-target-umi-filter: Optional. Disable targeted UMI filtering stage. See Targeted Algorithms for details. Default: false.
  • r1/r2-length: Hard trim the input Read 1 / 2of gene expression libraries to this length before analysis
  • chemistry: 试剂版本
  • force-cells: Force pipeline to use this number of cells, bypassing cell detection.
  • include-introns: Include intronic reads in count.
  • no-secondary: Disable secondary analysis
  • no-bam: Do not generate a bam file

[feature]

  • refernrnce: Feature reference CSV file, declaring Feature Barcode constructs and associated barcodes. Required for Feature Barcode libraries, otherwise optional.
  • r1 / r2-length: 同上

[libraries]

  • fastq_id (R) : fastq文件前缀
  • fastqs (R) : fastq文件位置
  • lanes: 样品在那个lane上,默认全部
  • physical_library_id: 文库类型,会根据指定feature_types自动检测,一般无需指定
  • feature_types (R) :基础文库类型,Gene Expression, Antibody Capture, CRISPR Guide Capture, Multiplexing Capture.
  • subsample_rate: 从fastq中抽取的reads数量

[sample]

  • smaple_id (R) : A name to identify a multiplexed sample. Must be alphanumeric with hyphens and/or underscores, and less than 64 characters. Required for cell multiplexing libraries.
  • cmo_ids (R) : CMO的id, 如果有多种则使用 |分隔
  • description: 描述信息

运行命令

  1. cellranger multi --id=sample345 --csv=/home/jdoe/sample345.csv --localcores <int> --localmem <int>

几个例子

  • eg1

cellranger-cellplex - 图3

  • eg2

cellranger-cellplex - 图4

  • eg3:

cellranger-cellplex - 图5

测试

路径

  1. /SGRNJ03/randd/user/liuzihao/work/cellplex/

测试命令

  1. export PATH="$PATH":/SGRNJ03/randd/user/liuzihao/work/cellplex/cellranger-6.1.2
  2. cellranger multi \
  3. --id=test_cellplex \
  4. --csv=/SGRNJ03/randd/user/liuzihao/work/cellplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_config.csv \
  5. --localcores 4 \
  6. --localmem 30

config文件

cellranger-cellplex - 图6

结果输出

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/cellplex

cellranger-cellplex - 图7

主要输出文件

四个文件 (multiplexing_analysis/):

assignment_confidence_table: 每个barcode对应的是哪个CMO的概率

cells_per_tag.json: 每个CMO对应的barcode有哪些json格式

tag_calls_per_cell.csv: 每个barcode的CMO的umi数量

tag_calls_summary.csv: 总体情况分析

feathure-barcode(count/)

cellranger-cellplex - 图8