10X cellplex
简介

cellplex,即Cell Multiplexing,即对每个样本的每个cell增加一个label,然后将其与其他的样本混合后通过细胞封装,建库,测序后可以通过这个label区分cell来自于哪个样本
优势:
- 在单个实验中增加样品通量
- 在单个实验中检测的细胞数量增加
- 在单个实验中增加可能的重复次数
- 在分析之前检测多重谱及其去除
分析: cellranger
使用流程为 :cellranger multi (v.6.0)Loupe6.0.0
Loupe: https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest#loupe
测试数据
背景: 两种cell line (Jurkat和Raji), 分别被两种CMO标记,混合后测序
- fastq
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.0.0/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_fastqs.tar
- config file
https://cf.10xgenomics.com/samples/cell-exp/6.0.0/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_config.csvhttps://cf.10xgenomics.com/samples/cell-exp/6.0.0/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_count_feature_reference.csv
config file
Multi Config CSV
格式:

具体解释
[gene-expression]部分
- reference (R) : 参考基因组位置
- except-cells: 期望cell数量
- min-assignment-confidence: 通过计算Cell Multiplexing Oligo(cmo)与目标Cell Multiplexing Oligo 的相似度来过滤数据
- cmo-set:cmo序列文件,具体格式为, (定制cmo时提供)
id,name,read,pattern,sequence,feature_typeCMO301,CMO301,R2,5P(BC),ATGAGGAATTCCTGC,Multiplexing CaptureCMO302,CMO302,R2,5P(BC),CATGCCAATAGAGCG,Multiplexing CaptureCMO303,CMO303,R2,5P(BC),CCGTCGTCCAAGCAT,Multiplexing Capture
- target-panel: Optional. Path to a target panel CSV file or name of a 10x Genomics fixed gene panel (pathway, pan-cancer, immunology, neuroscience).
- no-target-umi-filter: Optional. Disable targeted UMI filtering stage. See Targeted Algorithms for details. Default: false.
- r1/r2-length: Hard trim the input Read 1 / 2of gene expression libraries to this length before analysis
- chemistry: 试剂版本
- force-cells: Force pipeline to use this number of cells, bypassing cell detection.
- include-introns: Include intronic reads in count.
- no-secondary: Disable secondary analysis
- no-bam: Do not generate a bam file
[feature]
- refernrnce: Feature reference CSV file, declaring Feature Barcode constructs and associated barcodes. Required for Feature Barcode libraries, otherwise optional.
- r1 / r2-length: 同上
[libraries]
- fastq_id (R) : fastq文件前缀
- fastqs (R) : fastq文件位置
- lanes: 样品在那个lane上,默认全部
- physical_library_id: 文库类型,会根据指定
feature_types自动检测,一般无需指定 - feature_types (R) :基础文库类型,
Gene Expression,Antibody Capture,CRISPR Guide Capture,Multiplexing Capture. - subsample_rate: 从fastq中抽取的reads数量
[sample]
- smaple_id (R) : A name to identify a multiplexed sample. Must be alphanumeric with hyphens and/or underscores, and less than 64 characters. Required for cell multiplexing libraries.
- cmo_ids (R) : CMO的id, 如果有多种则使用
|分隔 - description: 描述信息
运行命令
cellranger multi --id=sample345 --csv=/home/jdoe/sample345.csv --localcores <int> --localmem <int>
几个例子
- eg1

- eg2

- eg3:

测试
路径
/SGRNJ03/randd/user/liuzihao/work/cellplex/
测试命令
export PATH="$PATH":/SGRNJ03/randd/user/liuzihao/work/cellplex/cellranger-6.1.2cellranger multi \--id=test_cellplex \--csv=/SGRNJ03/randd/user/liuzihao/work/cellplex/SC3_v3_NextGem_DI_CellPlex_Human_PBMC_10K_Multiplex_config.csv \--localcores 4 \--localmem 30
config文件

结果输出

主要输出文件
四个文件 (multiplexing_analysis/):
assignment_confidence_table: 每个barcode对应的是哪个CMO的概率
cells_per_tag.json: 每个CMO对应的barcode有哪些json格式
tag_calls_per_cell.csv: 每个barcode的CMO的umi数量
tag_calls_summary.csv: 总体情况分析
feathure-barcode(count/)

