李志颖
yolov5s
mAP0.5 22.5
mAP 11.4
:::
:::info
数据:采用yolov5s来训练模型
命令行:
python train.py —weights weights/yolov5s.pt —cfg models/yolov5s.yaml —hyp data/hyps/hyp.scratch.yaml —data dataSet/clothes.yaml —batch-size 16 —epochs 400 —device 4,5
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp204/weights/best.pt —iou-thres 0.45 —device 0 —verbose —save-txt
:::
yolov5m
mAP0.5 24.3
mAP 12.9
:::
:::info
数据:采用yolov5m来训练模型
命令行:
python train.py —weights weights/yolov5m.pt —cfg models/yolov5m.yaml —hyp data/hyps/hyp.scratch.yaml —data dataSet/clothes.yaml —batch-size 16 —epochs 400 —device 4,5
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp206/weights/best.pt —iou-thres 0.45 —device 0 —verbose —save-txt
:::
yolov5l
mAP0.5 28.8
mAP 15.3
:::
:::info
数据:采用yolov5l来训练模型
命令行:
python train.py —weights weights/yolov5l.pt —cfg models/yolov5l.yaml —hyp data/hyps/hyp.best1.yaml —data dataSet/clothes.yaml —batch-size 16 —epochs 400 —device 3,4
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp212/weights/best.pt —iou-thres 0.45 —device 0 —verbose —save-txt
:::
yolov5x
mAP0.5 30.6
mAP 17.1
:::
:::info
数据:采用yolov5x来训练模型
命令行:
python train.py —weights weights/yolov5x.pt —cfg models/yolov5x.yaml —hyp data/hyps/hyp.scratch01.yaml —data dataSet/clothes.yaml —batch-size 18 —epochs 400 —device 0,2,5
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp240/weights/best.pt —iou-thres 0.45 —device 5 —verbose —save-txt
:::
yolov5s6+Four Head+Atten
mAP0.5 29.8
mAP 14.2
:::
:::info
数据:采用yolov5s6_atten.yaml来训练模型
命令行:
python train.py —weights weights/yolov5s6.pt —cfg models/yolov5s6_atten.yaml —hyp data/hyps/hyp.best.yaml —data dataSet/clothes.yaml —batch-size 16 —epochs 400 —device 1,2
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp202/weights/best.pt —iou-thres 0.45 —device 0 —verbose —save-txt
:::
yolov5s6+Four Head+Bifpn
mAP0.5 28.4
mAP 15.6
:::
:::info
数据:采用yolov5s6-bifpn.yaml来训练模型
命令行:
python train.py —weights weights/yolov5s6.pt —cfg models/yolov5s6-bifpn.yaml —hyp data/hyps/hyp.best3.yaml —data dataSet/clothes.yaml —batch-size 16 —epochs 400 —device 1,5
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp219/weights/best.pt —iou-thres 0.45 —device 0 —verbose —save-txt
:::
Our Model
mAP0.5 31.5
mAP 15.9
:::
:::info
数据:Mixup由0转变为了0.243
命令行:
python train.py —weights weights/yolov5s6.pt —cfg models/yolov5s6-bifpn_atten.yaml —hyp data/hyps/hyp.best9.yaml —data dataSet/clothes.yaml —batch-size 16 —epochs 400 —device 1,5
:::
:::info
命令行:python val.py —data dataSet/clothes.yaml —weights runs/train/exp233/weights/best.pt —iou-thres 0.45 —device 0 —verbose —save-txt
:::
Centernet (Resnet-50)
:::tips
mAP: 10.79
Flops: 23.2GMac
Params: 32.67M
:::
yolov3
:::tips
mAP: 6.81
Flops: 19.62 GMac
Params: 62.12 M
:::