FLOPs-SSD
from nets.ssd import SSD300import torchvision.models as modelsfrom ptflops import get_model_complexity_infodef get_classes(classes_path): # 去取name和数量with open(classes_path, encoding='utf-8') as f:class_names = f.readlines()class_names = [c.strip() for c in class_names]return class_names, len(class_names)if __name__ == "__main__":classes_path = 'model_data/voc_classes.txt'class_names, num_classes = get_classes(classes_path)# 对应的模型创建myNet = SSD300(num_classes + 1, 'vgg')# 根据层数 以及跑的图片大小进行设置flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)print("Flops: {}".format(flops))print("Params: " + params)
FLOPs-yolov4
from nets.yolo import YoloBodyfrom ptflops import get_model_complexity_infodef get_classes(classes_path): # 去取name和数量with open(classes_path, encoding='utf-8') as f:class_names = f.readlines()class_names = [c.strip() for c in class_names]return class_names, len(class_names)if __name__ == "__main__":classes_path = 'model_data/voc_clothes_classes.txt'class_names, num_classes = get_classes(classes_path)# 对应的模型创建anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]myNet = YoloBody(anchors_mask, num_classes)# 根据层数 以及跑的图片大小进行设置flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)print("Flops: {}".format(flops))print("Params: " + params)
YoloV4(失败)
- ep008-loss7.070-val_loss6.145

- ep017-loss5.949-val_loss5.581

- ep030-loss5.037-val_loss4.922

- ep001-loss73.319-val_loss11.971

- ep002-loss10.649-val_loss8.547

- ep003-loss9.075-val_loss7.746

- ep026-loss5.229-val_loss5.078

- ep043-loss4.501-val_loss5.139

- ep052-loss4.376-val_loss5.250

| 权重 | mAP |
|---|---|
| ep008-loss7.070-val_loss6.145 | 6.71 |
| ep017-loss5.949-val_loss5.581 | 16.21 |
| ep030-loss5.037-val_loss4.922 | 24.26 |
| ep001-loss73.319-val_loss11.971 | 0.58 |
| ep002-loss10.649-val_loss8.547 | 1.43 |
| ep003-loss9.075-val_loss7.746 | 1.83 |
| ep026-loss5.229-val_loss5.078 | 22.54 |
| ep038-loss4.575-val_loss4.881 | 30.64 |
| ep052-loss4.376-val_loss5.250 | 27.54 |
SSD(成功)
- ep001-loss9.099-val_loss6.616

- ep006-loss6.029-val_loss5.649

- ep011-loss5.529-val_loss5.349

- ep018-loss5.089-val_loss5.075

- ep038-loss4.575-val_loss4.881

- ep061-loss4.020-val_loss4.222

- ep071-loss3.524-val_loss3.855

- ep057-loss4.357-val_loss4.379

- ep030-loss4.735-val_loss4.917

- ep065-loss3.776-val_loss3.973

- ep026-loss4.829-val_loss4.921

| 权重 | mAP |
|---|---|
| ep001-loss9.099-val_loss6.616 | 11.51 |
| ep026-loss4.829-val_loss4.921 | 58.05 |
| ep065-loss3.776-val_loss3.973 | 56.39 |
| ep030-loss4.735-val_loss4.917 | 60.25 |
| ep057-loss4.357-val_loss4.379 | 47.9 |
| ep071-loss3.524-val_loss3.855 | 59.94 |
| ep061-loss4.020-val_loss4.222 | 57.46 |
| ep038-loss4.575-val_loss4.881 | 63.21 |
| ep018-loss5.089-val_loss5.075 | 41.38 |
| ep006-loss6.029-val_loss5.649 | 27.89 |

- FLOPs
YoloV4(不满意)
- ep006-loss6.976-val_loss6.224

- ep013-loss5.956-val_loss5.406

- ep027-loss4.986-val_loss4.570

- ep060-loss4.038-val_loss4.029

- ep100-loss3.251-val_loss3.683

- ep085-loss3.434-val_loss3.769

- ep070-loss3.645-val_loss3.861.pth

- ep093-loss3.337-val_loss3.662

- ep063-loss3.844-val_loss3.929

- ep066-loss3.726-val_loss3.892

- ep088-loss3.379-val_loss3.738

| 权重 | mAP |
|---|---|
- ep006-loss6.976-val_loss6.224 |
3.39 |
- ep013-loss5.956-val_loss5.406 |
9.35 |
- ep027-loss4.986-val_loss4.570 |
24.12 |
- ep060-loss4.038-val_loss4.029 |
34 |
- ep100-loss3.251-val_loss3.683 |
40.59 |
- ep085-loss3.434-val_loss3.769 |
40.17 |
- ep070-loss3.645-val_loss3.861 |
38.4 |
- ep093-loss3.337-val_loss3.662 |
39.05 |
- ep063-loss3.844-val_loss3.929 |
38.53 |
- ep066-loss3.726-val_loss3.892 |
37.18 |
- ep088-loss3.379-val_loss3.738 |
41.40 |
Faster(resnet50 不满意)
- ep002-loss1.465-val_loss1.353

- ep012-loss1.203-val_loss1.302

- ep024-loss1.124-val_loss1.162

- ep035-loss1.079-val_loss1.071

- ep045-loss1.062-val_loss1.171

- ep055-loss1.060-val_loss1.047

- ep065-loss0.998-val_loss1.175

- ep075-loss0.996-val_loss1.183

- ep085-loss0.973-val_loss1.119

- ep095-loss0.941-val_loss1.170

| 权重 | mAP |
|---|---|
- ep002-loss1.465-val_loss1.353 |
3.00 |
- ep012-loss1.203-val_loss1.302 |
16.26 |
- ep024-loss1.124-val_loss1.162 |
20.35 |
- ep035-loss1.079-val_loss1.071 |
23.72 |
- ep045-loss1.062-val_loss1.171 |
24.51 |
- ep055-loss1.060-val_loss1.047 |
18.29 |
- ep065-loss0.998-val_loss1.175 |
27.22 |
- ep075-loss0.996-val_loss1.183 |
29.57 |
- ep085-loss0.973-val_loss1.119 |
29.95 |
- ep095-loss0.941-val_loss1.170 |
30.65 |
Faster(vgg 断开了)
- ep002-loss1.838-val_loss1.865

- ep011-loss1.564-val_loss1.710

- ep020-loss1.457-val_loss1.627

- ep031-loss1.373-val_loss1.585

- ep002-loss1.838-val_loss1.865 |
11.33 |
|---|---|
- ep011-loss1.564-val_loss1.710 |
23.90 |
- ep020-loss1.457-val_loss1.627 |
27.22 |
- ep031-loss1.373-val_loss1.585 |
31.80 |
Faster(vgg 最高逼近50)
- ep001-loss2.065-val_loss1.938

- ep002-loss1.866-val_loss1.888

- ep008-loss1.608-val_loss1.758

- ep014-loss1.534-val_loss1.660

- ep021-loss1.438-val_loss1.632

- ep031-loss1.394-val_loss1.580

- ep041-loss1.339-val_loss1.568

- ep051-loss1.357-val_loss1.554

- ep061-loss1.223-val_loss1.490

- ep071-loss1.146-val_loss1.439

- ep081-loss1.094-val_loss1.413

- ep091-loss1.076-val_loss1.413

- ep100-loss1.054-val_loss1.431

- ep075-loss1.144-val_loss1.413

- ep085-loss1.097-val_loss1.447

- ep095-loss1.062-val_loss1.390

- ep098-loss1.073-val_loss1.383

- ep087-loss1.084-val_loss1.418

| 权重 | mAP | | —- | —- | |
- ep001-loss2.065-val_loss1.938
| 8.5 | |
- ep002-loss1.866-val_loss1.888
| 12.55 | |
- ep008-loss1.608-val_loss1.758
| 22.41 | |
- ep014-loss1.534-val_loss1.660
| 25.99 | |
- ep021-loss1.438-val_loss1.632
| 28.93 | |
- ep031-loss1.394-val_loss1.580
| 32.33 | |
- ep041-loss1.339-val_loss1.568
| 33.94 | |
- ep051-loss1.357-val_loss1.554
| 33.79 | |
- ep061-loss1.223-val_loss1.490
| 41.51 | |
- ep071-loss1.146-val_loss1.439
| 44.79 | |
- ep081-loss1.094-val_loss1.413
| 47.28 | |
- ep091-loss1.076-val_loss1.413
| 45.23 | |
- ep100-loss1.054-val_loss1.431
| 46.78 | |
- ep095-loss1.062-val_loss1.390
| 47.01 | |
- ep075-loss1.144-val_loss1.413
| 45.02 | |
- ep085-loss1.097-val_loss1.447
| 45.18 | |
- ep098-loss1.073-val_loss1.383
| 47.47 | |
- ep087-loss1.084-val_loss1.418
| 46.05 |
YoloV4(不满意)
- ep002-loss8.676-val_loss7.802

- ep023-loss5.622-val_loss5.088

- ep045-loss4.705-val_loss4.343

- ep061-loss4.051-val_loss4.030

- ep086-loss3.541-val_loss3.919

- ep100-loss3.434-val_loss3.835

| 权重 | mAP |
|---|---|
- ep002-loss8.676-val_loss7.802 |
1.52 |
- ep023-loss5.622-val_loss5.088 |
12.55 |
- ep045-loss4.705-val_loss4.343 |
30.18 |
- ep061-loss4.051-val_loss4.030 |
33.88 |
- ep086-loss3.541-val_loss3.919 |
38.28 |
- ep100-loss3.434-val_loss3.835 |
39.23 |
- ep070-loss3.370-val_loss3.732

- ep092-loss3.003-val_loss3.709

- ep100-loss2.901-val_loss3.688

- ep110-loss2.799-val_loss3.615

- ep119-loss2.881-val_loss3.661

- ep128-loss2.804-val_loss3.560

- ep141-loss2.784-val_loss3.626

- ep151-loss2.871-val_loss3.645

- ep160-loss2.802-val_loss3.651

| 权重 | mAP |
|---|---|
| ep184-loss2.770-val_loss3.639.pth | 47.23 |
| ep199-loss2.808-val_loss3.517.pth | 47.78 |
YoloV4(成功)
| 权重 | mAP |
|---|---|
| ep118-loss2.449-val_loss3.536.pth | 60.10 |
| ep126-loss2.414-val_loss3.681.pth | 60.23 |
| ep144-loss2.422-val_loss3.563.pth | 60.52 |
| ep109-loss2.376-val_loss3.693.pth | 60.33 |
| ep105-loss2.441-val_loss3.644.pth | 60.31 |
- ep144-loss2.422-val_loss3.563.pth


- FLOPs

