:::info 该报告汇报时间✏️: 2021-11-6
汇报内容涉及模型:
- Faster - vgg
- YoloV4
- SSD
大礼包下载地址:https://yun.hengyimonster.top/s/yrc6
下载密码:iww527
有效期:2021年11月6日即日起30天有效期
解压密码:zhebuchongjidinghui
:::
概述:
HfsCk]
uR%{)Y’Qz-n3oGU`ZJo@(1ntxp8U1+bW;JlZH^I4%0rxf;[N+eQ)Lolrw&E%,4q1
SSD - Pytorch
仓库地址: https://github.com/bubbliiiing/ssd-pytorch 预训练权重地址: https://github.com/bubbliiiing/ssd-pytorch/releases/download/v1.0/ssd_weights.pth
yolov4-Pytorch
仓库地址:https://github.com/bubbliiiing/yolov4-pytorch 预训练权重地址:https://github.com/bubbliiiing/yolov4-pytorch/releases/download/v1.0/yolo4_voc_weights.pth
fater-rcnn-pytorch(vgg版本)
仓库地址:https://github.com/bubbliiiing/faster-rcnn-pytorch 预训练权重:https://github.com/bubbliiiing/faster-rcnn-pytorch/releases/download/v1.0/voc_weights_vgg.pth
faster-rcnn.pytorch
仓库地址:https://github.com/jwyang/faster-rcnn.pytorch 预训练权重:https://filebox.ece.vt.edu/~jw2yang/faster-rcnn/pretrained-base-models/vgg16_caffe.pth
Flops:
SSD - Pytorch
Flops:68.23 GMac
计算代码:
from nets.ssd import SSD300
import torchvision.models as models
from ptflops import get_model_complexity_info
def get_classes(classes_path): # 去取name和数量
with open(classes_path, encoding='utf-8') as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names, len(class_names)
if __name__ == "__main__":
classes_path = 'model_data/voc_classes.txt'
class_names, num_classes = get_classes(classes_path)
# 对应的模型创建
myNet = SSD300(num_classes + 1, 'vgg')
# 根据层数 以及跑的图片大小进行设置
flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)
print("Flops: {}".format(flops))
print("Params: " + params)
FLOPs-yolov4
Flops:30.28 GMac
from nets.yolo import YoloBody
from ptflops import get_model_complexity_info
def get_classes(classes_path): # 去取name和数量
with open(classes_path, encoding='utf-8') as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names, len(class_names)
if __name__ == "__main__":
classes_path = 'model_data/voc_clothes_classes.txt'
class_names, num_classes = get_classes(classes_path)
# 对应的模型创建
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
myNet = YoloBody(anchors_mask, num_classes)
# 根据层数 以及跑的图片大小进行设置
flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)
print("Flops: {}".format(flops))
print("Params: " + params)
Faster-rcnn
Flops:91.22 GMac
from nets.frcnn import FasterRCNN
import torchvision.models as models
from ptflops import get_model_complexity_info
def get_classes(classes_path):
with open(classes_path, encoding='utf-8') as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names, len(class_names)
if __name__ == "__main__":
# print("Load model.")
# ssd = SSD(confidence = 0.01, nms_iou = 0.5)
# print("Load model done.")
# net = models.vgg16() #可以为自己搭建的模型
classes_path = 'model_data/voc_classes.txt'
class_names, num_classes = get_classes(classes_path)
myNet = FasterRCNN(num_classes, "predict", anchor_scales = [8, 16, 32], backbone = 'vgg')
flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)
print("Flops: {}".format(flops))
print("Params: " + params)
实验记录
SSD - Pytorch(老标签)
权重 | mAP |
---|---|
ep038-loss4.575-val_loss4.881 | 45.91 |
ep061-loss4.020-val_loss4.222 | 57.46 |
ep091-loss3.156-val_loss3.615 | 65.10 |
ep100-loss3.031-val_loss3.623 | 65.69 |
YoloV4(老标签)
权重 | mAP |
---|---|
ep118-loss2.449-val_loss3.536.pth | 60.10 |
ep126-loss2.414-val_loss3.681.pth | 60.23 |
ep144-loss2.422-val_loss3.563.pth | 60.52 |
ep109-loss2.376-val_loss3.693.pth | 60.33 |
ep105-loss2.441-val_loss3.644.pth | 60.31 |
Faster-rcnn(老标签)
权重 | mAP |
---|---|
ep073-loss1.133-val_loss1.433 | 43.80 |
ep147-loss0.968-val_loss1.327 | 50.62 |
ep132-loss0.976-val_loss1.301 | 51.29 |
ep094-loss1.080-val_loss1.405 | 45.86 |
YoloV4(新标签)
权重 | mAP |
---|---|
ep109-loss2.376-val_loss3.693 | 63.68 |
ep105-loss2.441-val_loss3.644 | 65.03 |
ep118-loss2.449-val_loss3.536 | 64.70 |
ep126-loss2.414-val_loss3.681 | 66.00 |
SSD-Pytorch(新标签)
权重 | mAP |
---|---|
ep098-loss3.045-val_loss3.615 | 59.24 |
ep091-loss3.060-val_loss3.634 | 59.15 |
Faster-rcnn(新标签)
权重 | mAP |
---|---|
ep129-loss0.981-val_loss1.380 | 37.52 |
ep140-loss0.973-val_loss1.372 | 38.27 |
ep013-loss1.696-val_loss1.941 | 25.21 |
ep076-loss1.185-val_loss1.409 | 33.91 |
ep109-loss1.036-val_loss1.368 | 38.20 |
Faster-rcnn(新库)
权重 | mAP |
---|---|
faster_rcnn_1_1_342 | 9.70 |
faster_rcnn_1_4_342 | 22.44 |
faster_rcnn_1_7_342 | 28.80 |
faster_rcnn_1_11_342 | 32.03 |
faster_rcnn_1_14_342 | 31.60 |
faster_rcnn_1_15_342 | 33.34 |
注意⚠️: 没有生成对应的文件图,请到对应路径下跑~
SSD-Pytorch(排序标签)
权重 | mAP |
---|---|
ep051-loss4.936-val_loss6.599 | 2.91 |
ep050-loss4.194-val_loss6.443 | 2.64 |
ep001-loss9.059-val_loss7.066 | 1.35 |
ep004-loss6.087-val_loss6.772 | 2.01 |
ep007-loss5.552-val_loss6.540 | 2.11 |
ep100-loss3.025-val_loss6.066 | 5.88 |
YoloV4-Pytroch(排序标签)
权重 | mAP |
---|---|
ep100-loss2.589-val_loss7.117 | 6.59 |
饭后甜点
SSD
Flops | 68.23 GMac |
---|---|
Params | 38.58 M |
FPS | 36.74898029967384 |
YoloV4
Flops | 30.28 GMac |
---|---|
Params | 64.54 M |
FPS |
Faster-rcnn
Flops | 91.22 GMac |
---|---|
Params | 138.96 M |
FPS |