:::info 该报告汇报时间✏️: 2021-11-6

汇报内容涉及模型:

  • Faster - vgg
  • YoloV4
  • SSD

大礼包下载地址:https://yun.hengyimonster.top/s/yrc6
下载密码:iww527
有效期:2021年11月6日即日起30天有效期
解压密码:zhebuchongjidinghui :::

概述:

HfsCk]!pQC-H\5BAc^gBo/^qq)/i21ufiN@H”Y

uR%{)Y’Qz-n3oGU`ZJo@(1ntxp8U1+bW;JlZH^I4%0rxf;[N+eQ)Lolrw&E%,4q1

  1. SSD - Pytorch

    仓库地址: https://github.com/bubbliiiing/ssd-pytorch 预训练权重地址: https://github.com/bubbliiiing/ssd-pytorch/releases/download/v1.0/ssd_weights.pth

  2. yolov4-Pytorch

    仓库地址:https://github.com/bubbliiiing/yolov4-pytorch 预训练权重地址:https://github.com/bubbliiiing/yolov4-pytorch/releases/download/v1.0/yolo4_voc_weights.pth

  3. fater-rcnn-pytorch(vgg版本)

    仓库地址:https://github.com/bubbliiiing/faster-rcnn-pytorch 预训练权重:https://github.com/bubbliiiing/faster-rcnn-pytorch/releases/download/v1.0/voc_weights_vgg.pth

  4. faster-rcnn.pytorch

    仓库地址:https://github.com/jwyang/faster-rcnn.pytorch 预训练权重:https://filebox.ece.vt.edu/~jw2yang/faster-rcnn/pretrained-base-models/vgg16_caffe.pth

Flops:

SSD - Pytorch

Flops:68.23 GMac
计算代码:

  1. from nets.ssd import SSD300
  2. import torchvision.models as models
  3. from ptflops import get_model_complexity_info
  4. def get_classes(classes_path): # 去取name和数量
  5. with open(classes_path, encoding='utf-8') as f:
  6. class_names = f.readlines()
  7. class_names = [c.strip() for c in class_names]
  8. return class_names, len(class_names)
  9. if __name__ == "__main__":
  10. classes_path = 'model_data/voc_classes.txt'
  11. class_names, num_classes = get_classes(classes_path)
  12. # 对应的模型创建
  13. myNet = SSD300(num_classes + 1, 'vgg')
  14. # 根据层数 以及跑的图片大小进行设置
  15. flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)
  16. print("Flops: {}".format(flops))
  17. print("Params: " + params)

FLOPs-yolov4

Flops:30.28 GMac

  1. from nets.yolo import YoloBody
  2. from ptflops import get_model_complexity_info
  3. def get_classes(classes_path): # 去取name和数量
  4. with open(classes_path, encoding='utf-8') as f:
  5. class_names = f.readlines()
  6. class_names = [c.strip() for c in class_names]
  7. return class_names, len(class_names)
  8. if __name__ == "__main__":
  9. classes_path = 'model_data/voc_clothes_classes.txt'
  10. class_names, num_classes = get_classes(classes_path)
  11. # 对应的模型创建
  12. anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  13. myNet = YoloBody(anchors_mask, num_classes)
  14. # 根据层数 以及跑的图片大小进行设置
  15. flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)
  16. print("Flops: {}".format(flops))
  17. print("Params: " + params)

Faster-rcnn

Flops:91.22 GMac

  1. from nets.frcnn import FasterRCNN
  2. import torchvision.models as models
  3. from ptflops import get_model_complexity_info
  4. def get_classes(classes_path):
  5. with open(classes_path, encoding='utf-8') as f:
  6. class_names = f.readlines()
  7. class_names = [c.strip() for c in class_names]
  8. return class_names, len(class_names)
  9. if __name__ == "__main__":
  10. # print("Load model.")
  11. # ssd = SSD(confidence = 0.01, nms_iou = 0.5)
  12. # print("Load model done.")
  13. # net = models.vgg16() #可以为自己搭建的模型
  14. classes_path = 'model_data/voc_classes.txt'
  15. class_names, num_classes = get_classes(classes_path)
  16. myNet = FasterRCNN(num_classes, "predict", anchor_scales = [8, 16, 32], backbone = 'vgg')
  17. flops, params = get_model_complexity_info(myNet, (3,416,416), as_strings=True, print_per_layer_stat=True)
  18. print("Flops: {}".format(flops))
  19. print("Params: " + params)

实验记录

SSD - Pytorch(老标签)

权重 mAP
ep038-loss4.575-val_loss4.881 45.91
ep061-loss4.020-val_loss4.222 57.46
ep091-loss3.156-val_loss3.615 65.10
ep100-loss3.031-val_loss3.623 65.69

image.png

YoloV4(老标签)

权重 mAP
ep118-loss2.449-val_loss3.536.pth 60.10
ep126-loss2.414-val_loss3.681.pth 60.23
ep144-loss2.422-val_loss3.563.pth 60.52
ep109-loss2.376-val_loss3.693.pth 60.33
ep105-loss2.441-val_loss3.644.pth 60.31

image.png

Faster-rcnn(老标签)

权重 mAP
ep073-loss1.133-val_loss1.433 43.80
ep147-loss0.968-val_loss1.327 50.62
ep132-loss0.976-val_loss1.301 51.29
ep094-loss1.080-val_loss1.405 45.86

image.png

YoloV4(新标签)

权重 mAP
ep109-loss2.376-val_loss3.693 63.68
ep105-loss2.441-val_loss3.644 65.03
ep118-loss2.449-val_loss3.536 64.70
ep126-loss2.414-val_loss3.681 66.00

image.png

SSD-Pytorch(新标签)

权重 mAP
ep098-loss3.045-val_loss3.615 59.24
ep091-loss3.060-val_loss3.634 59.15

image.png

Faster-rcnn(新标签)

权重 mAP
ep129-loss0.981-val_loss1.380 37.52
ep140-loss0.973-val_loss1.372 38.27
ep013-loss1.696-val_loss1.941 25.21
ep076-loss1.185-val_loss1.409 33.91
ep109-loss1.036-val_loss1.368 38.20

image.png

Faster-rcnn(新库)

权重 mAP
faster_rcnn_1_1_342 9.70
faster_rcnn_1_4_342 22.44
faster_rcnn_1_7_342 28.80
faster_rcnn_1_11_342 32.03
faster_rcnn_1_14_342 31.60
faster_rcnn_1_15_342 33.34

注意⚠️: 没有生成对应的文件图,请到对应路径下跑~

SSD-Pytorch(排序标签)

权重 mAP
ep051-loss4.936-val_loss6.599 2.91
ep050-loss4.194-val_loss6.443 2.64
ep001-loss9.059-val_loss7.066 1.35
ep004-loss6.087-val_loss6.772 2.01
ep007-loss5.552-val_loss6.540 2.11
ep100-loss3.025-val_loss6.066 5.88

image.png

YoloV4-Pytroch(排序标签)

权重 mAP
ep100-loss2.589-val_loss7.117 6.59

image.png

饭后甜点

SSD

Flops 68.23 GMac
Params 38.58 M
FPS 36.74898029967384

YoloV4

Flops 30.28 GMac
Params 64.54 M
FPS

Faster-rcnn

Flops 91.22 GMac
Params 138.96 M
FPS