冒泡排序

  1. function bubbleSort(array) {
  2. let length = array.length;
  3. for (let i = 0; i < length; i++) {
  4. for (let j = 0; j < length - i - 1; j++) {
  5. if (array[j] > array[j + 1]) {
  6. [array[j], array[j + 1]] = [array[j + 1], array[j]];
  7. }
  8. }
  9. }
  10. return array;
  11. }

选择排序

  1. function selectSort(array) {
  2. let length = array.length;
  3. for (let i = 0; i < length; i++) {
  4. let min = i;
  5. for (let j = i + 1; j < length; j++) {
  6. if (array[min] > array[j]) {
  7. min = j;
  8. }
  9. }
  10. [array[min], array[i]] = [array[i], array[min]];
  11. }
  12. return array;
  13. }

插入排序

  1. function insertSort(array) {
  2. let length = array.length;
  3. for (let i = 1; i < length; i++) {
  4. let current = array[i];
  5. let j;
  6. for (j = i; j > 0 && array[j - 1] > current; j--) {
  7. array[j] = array[j - 1];
  8. }
  9. array[j] = current;
  10. }
  11. return array;
  12. }

归并排序

  1. function merge(left, right) {
  2. let result = [];
  3. while (left.length > 0 && right.length > 0) {
  4. if (left[0] <= right[0]) {
  5. result.push(left.shift());
  6. } else {
  7. result.push(right.shift());
  8. }
  9. }
  10. if (left.length > 0) {
  11. result = result.concat(left);
  12. }
  13. if (right.length > 0) {
  14. result = result.concat(right);
  15. }
  16. return result;
  17. }
  18. function mergeSort(array) {
  19. let length = array.length;
  20. if (length <= 1) return array;
  21. let mid = Math.floor(length / 2);
  22. let left = array.slice(0, mid);
  23. let right = array.slice(mid);
  24. return merge(mergeSort(left), mergeSort(right));
  25. }

快速排序

快排的思路是得先找到一个基准值(pivot),然后把数组中比基准值小的数都放到它的左边,把数组中比基准值大的值都放到它的右边,同时返回这个基准值后,再分别对两边的数据进行继续快排,直到排序完成。

  1. function quickSort(array, left, right) {
  2. let partIndex;
  3. if (left < right) {
  4. partIndex = partition(array, left, right);
  5. quickSort(array, left, partIndex - 1);
  6. quickSort(array, partIndex + 1, right);
  7. }
  8. return array;
  9. }
  10. function partition(array, left, right) {
  11. let pivot = left,
  12. index = pivot + 1;
  13. for (let i = index; i <= right; i++) {
  14. if (array[pivot] > array[i]) {
  15. [array[index], array[i]] = [array[i], array[index]];
  16. index++;
  17. }
  18. }
  19. [array[pivot], array[index - 1]] = [array[index - 1], array[pivot]];
  20. return index - 1;
  21. }
  22. const sortArray = quickSort(array, 0, array.length - 1);

二分法

  1. function half(array, target) {
  2. let left = 0,
  3. right = array.length - 1;
  4. while (left <= right) {
  5. const mid = Math.floor((right - left) / 2) + left;
  6. if (array[mid] === target) {
  7. return mid;
  8. } else if (array[mid] > target) {
  9. right = mid - 1;
  10. } else if (array[mid] < target) {
  11. left = mid + 1;
  12. }
  13. }
  14. return -1;
  15. }

二叉树遍历

深度优先遍历

深度优先遍历也可以分为三种:前序遍历(preorder)、中序遍历(inorder)和后序遍历(postorder)。三种方式都类似,实现过程中可以理解为在哪个阶段访问根节点。

  1. // 前序遍历
  2. var preorderTraversal = function(root) {
  3. let result= [];
  4. if(!root) return result;
  5. result.push(root.val);
  6. result = result.concat(preorderTraversal(root.left));
  7. result = result.concat(preorderTraversal(root.right));
  8. return result;
  9. };
  10. // 中序遍历
  11. var inorderTraversal = function(root) {
  12. let result= [];
  13. if(!root) return result;
  14. result = result.concat(preorderTraversal(root.left));
  15. result.push(root.val);
  16. result = result.concat(preorderTraversal(root.right));
  17. return result;
  18. };
  19. // 后序遍历
  20. var postorderTraversal = function(root) {
  21. let result= [];
  22. if(!root) return result;
  23. result = result.concat(preorderTraversal(root.left));
  24. result = result.concat(preorderTraversal(root.right));
  25. result.push(root.val);
  26. return result;
  27. };

广度优先遍历

广度优先遍历的思路是维护一个队列,在每次循环中对当层的元素项进行收集,后续通过先进先出,一个个输出元素项到 ret 目标数组中。

  1. var levelOrder = function(root) {
  2. let q = [], ret = [];
  3. if(!root) return ret;
  4. q.push(root);
  5. while(q.length !== 0) {
  6. let currentLevelSize = q.length;
  7. ret.push([]);
  8. for(let i=0; i<currentLevelSize; i++) {
  9. const node = q.shift();
  10. ret[ret.length-1].push(node.val);
  11. if(node.left) q.push(node.left);
  12. if(node.right) q.push(node.right);
  13. }
  14. }
  15. return ret;
  16. };