介绍
散列函数(英语:Hash function)又称散列算法、哈希函数,是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。
在Java中,每个Object都有一个hashCode方法,有需要可以进行重写。
Object类的hashCode
public native int hashCode();
可以看到此方法为native方法,底层是调用了C++的函数,因为是在Object类中,翻开JDK源码的Object.c的定义
#include <stdio.h>
#include <signal.h>
#include <limits.h>
#include "jni.h"
#include "jni_util.h"
#include "jvm.h"
#include "java_lang_Object.h"
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode},
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll},
{"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},
};
JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
(*env)->RegisterNatives(env, cls,
methods, sizeof(methods)/sizeof(methods[0]));
}
JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
if (this == NULL) {
JNU_ThrowNullPointerException(env, NULL);
return 0;
} else {
return (*env)->GetObjectClass(env, this);
}
}
可以看到hashCode方法实际上调用的是JVM_IHashCode这个方法。查找这个方法发现在jvm.cpp中定义
// java.lang.Object ///////////////////////////////////////////////
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END
从这里看出JVM_IHashCode实际又是调用的ObjectSynchronizer::FastHashCode这个方法,继续查找到这个方法的定义在synchronizer.cpp中:
FastHashCode函数
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
// 如果使用了偏向锁
if (UseBiasedLocking) {
// NOTE: many places throughout the JVM do not expect a safepoint
// to be taken here, in particular most operations on perm gen
// objects. However, we only ever bias Java instances and all of
// the call sites of identity_hash that might revoke biases have
// been checked to make sure they can handle a safepoint. The
// added check of the bias pattern is to avoid useless calls to
// thread-local storage.
// 对象处于偏向状态
if (obj->mark()->has_bias_pattern()) {
// Box and unbox the raw reference just in case we cause a STW safepoint.
Handle hobj (Self, obj) ;
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(),
"biases should not be seen by VM thread here");
// 撤销偏向锁
BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
obj = hobj() ;
// 保证对象没有偏向锁
assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
}
}
// hashCode() is a heap mutator ...
// Relaxing assertion for bug 6320749.
// 达到安全点
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(), "invariant") ;
// 是java线程
assert (Universe::verify_in_progress() ||
Self->is_Java_thread() , "invariant") ;
// 线程没有被阻塞
assert (Universe::verify_in_progress() ||
((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
ObjectMonitor* monitor = NULL;
markOop temp, test;
intptr_t hash;
// 读出一个稳定的mark,如果对象处于锁膨胀,那么等待锁膨胀完毕再读
markOop mark = ReadStableMark (obj);
// 判断没有处于偏向锁状态
// object should remain ineligible for biased locking
assert (!mark->has_bias_pattern(), "invariant") ;
// 处于无锁状态
if (mark->is_neutral()) {
hash = mark->hash(); // this is a normal header
// 有hash值直接返回
if (hash) { // if it has hash, just return it
return hash;
}
// 没有hash值,调用get_next_hash函数计算hash值
hash = get_next_hash(Self, obj); // allocate a new hash code
temp = mark->copy_set_hash(hash); // merge the hash code into header
// use (machine word version) atomic operation to install the hash
test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
if (test == mark) {
return hash;
}
// If atomic operation failed, we must inflate the header
// into heavy weight monitor. We could add more code here
// for fast path, but it does not worth the complexity.
} else if (mark->has_monitor()) {
monitor = mark->monitor();
temp = monitor->header();
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash();
if (hash) {
return hash;
}
// Skip to the following code to reduce code size
} else if (Self->is_lock_owned((address)mark->locker())) {
temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash(); // by current thread, check if the displaced
if (hash) { // header contains hash code
return hash;
}
// WARNING:
// The displaced header is strictly immutable.
// It can NOT be changed in ANY cases. So we have
// to inflate the header into heavyweight monitor
// even the current thread owns the lock. The reason
// is the BasicLock (stack slot) will be asynchronously
// read by other threads during the inflate() function.
// Any change to stack may not propagate to other threads
// correctly.
}
// Inflate the monitor to set hash code
monitor = ObjectSynchronizer::inflate(Self, obj);
// Load displaced header and check it has hash code
mark = monitor->header();
assert (mark->is_neutral(), "invariant") ;
hash = mark->hash();
if (hash == 0) {
hash = get_next_hash(Self, obj);
temp = mark->copy_set_hash(hash); // merge hash code into header
assert (temp->is_neutral(), "invariant") ;
test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
if (test != mark) {
// The only update to the header in the monitor (outside GC)
// is install the hash code. If someone add new usage of
// displaced header, please update this code
hash = test->hash();
assert (test->is_neutral(), "invariant") ;
assert (hash != 0, "Trivial unexpected object/monitor header usage.");
}
}
// We finally get the hash
return hash;
}
以上分析出在对象头没有hash值的情况下,会调用get_next_hash函数计算出hash值,get_next_hash的定义如下:
get_next_hash函数
static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
// This form uses an unguarded global Park-Miller RNG,
// so it's possible for two threads to race and generate the same RNG.
// On MP system we'll have lots of RW access to a global, so the
// mechanism induces lots of coherency traffic.
// 系统产生随机数
value = os::random() ;
} else
if (hashCode == 1) {
// This variation has the property of being stable (idempotent)
// between STW operations. This can be useful in some of the 1-0
// synchronization schemes.
// 内存地址做移位再和一个随机数做异或
intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
// 固定返回1
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
// 序列自增
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
// 返回内存地址
value = cast_from_oop<intptr_t>(obj) ;
} else {
// Marsaglia's xor-shift 随机数算法
// Marsaglia's xor-shift scheme with thread-specific state
// This is probably the best overall implementation -- we'll
// likely make this the default in future releases.
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
}
value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}
可以看到有6种hashCode的生成方法,根据hashCode变量指定不同的生成方案,可以通过在JVM启动参数中添加-XX:hashCode=?,改变默认的hashCode计算方式。
对于OpenJDK8,默认是用最后一种,使用的是Marsaglia’s xor-shift随机数算法。
product(intx, hashCode, 5,"(Unstable) select hashCode generation algorithm")
此方法使用了三个固定值和一个随机数,在thread.cpp中定义
// thread-specific hashCode stream generator state - Marsaglia shift-xor form
_hashStateX = os::random() ;
_hashStateY = 842502087 ;
_hashStateZ = 0x8767 ; // (int)(3579807591LL & 0xffff) ;
_hashStateW = 273326509 ;
所以,对于JDK8,对象在没有重写hashCode的情况下,hashCode的生成和内存地址无关,默认是根据Marsaglia’s xor-shift算法随机生成的。