以下示例程序展示了Flink的不同应用程序,从简单的字数统计到图形算法。代码示例说明了Flink的DataSet API的使用。
可以在Flink源存储库的flink-examples-batch模块中找到以下和更多示例的完整源代码。
运行一个例子
为了运行Flink示例,我们假设您有一个正在运行的Flink实例。导航中的“快速入门”和“设置”选项卡描述了启动Flink的各种方法。
最简单的方法是运行./bin/start-cluster.sh
,默认情况下启动一个带有一个JobManager和一个TaskManager的本地集群。
Flink的每个二进制版本都包含一个examples
目录,其中包含此页面上每个示例的jar文件。
要运行WordCount示例,请发出以下命令:
./bin/flink run ./examples/batch/WordCount.jar
其他示例可以以类似的方式启动。
请注意,通过使用内置数据,许多示例在不传递任何参数的情况下运行。要使用实际数据运行WordCount,您必须将路径传递给数据:
./bin/flink run ./examples/batch/WordCount.jar --input /path/to/some/text/data --output /path/to/result
请注意,非本地文件系统需要模式前缀,例如hdfs://
。
字数
WordCount是大数据处理系统的“Hello World”。它计算文本集合中单词的频率。该算法分两步进行:首先,文本将文本分成单个单词。其次,对单词进行分组和计数。
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = env.readTextFile("/path/to/file");
DataSet<Tuple2<String, Integer>> counts =
// split up the lines in pairs (2-tuples) containing: (word,1)
text.flatMap(new Tokenizer())
// group by the tuple field "0" and sum up tuple field "1"
.groupBy(0)
.sum(1);
counts.writeAsCsv(outputPath, "\n", " ");
// User-defined functions
public static class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
// normalize and split the line
String[] tokens = value.toLowerCase().split("\\W+");
// emit the pairs
for (String token : tokens) {
if (token.length() > 0) {
out.collect(new Tuple2<String, Integer>(token, 1));
}
}
}
}
该字计数示例实现上述算法的输入参数:--input <path> --output <path>
。作为测试数据,任何文本文件都可以。
val env = ExecutionEnvironment.getExecutionEnvironment
// get input data val text = env.readTextFile("/path/to/file")
val counts = text.flatMap { _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
.map { (_, 1) }
.groupBy(0)
.sum(1)
counts.writeAsCsv(outputPath, "\n", " ")
该字计数示例实现上述算法的输入参数:--input <path> --output <path>
。作为测试数据,任何文本文件都可以。
网页排名
PageRank算法计算链接定义的图形中页面的“重要性”,链接指向一个页面到另一个页面。它是一种迭代图算法,这意味着它重复应用相同的计算。在每次迭代中,每个页面在其所有邻居上分配其当前等级,并将其新等级计算为从其邻居接收的等级的纳税总和。PageRank算法由Google搜索引擎推广,该搜索引擎利用网页的重要性对搜索查询的结果进行排名。
在这个简单的例子中,PageRank通过批量迭代和固定数量的迭代来实现。
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// read the pages and initial ranks by parsing a CSV file
DataSet<Tuple2<Long, Double>> pagesWithRanks = env.readCsvFile(pagesInputPath)
.types(Long.class, Double.class)
// the links are encoded as an adjacency list: (page-id, Array(neighbor-ids))
DataSet<Tuple2<Long, Long[]>> pageLinkLists = getLinksDataSet(env);
// set iterative data set
IterativeDataSet<Tuple2<Long, Double>> iteration = pagesWithRanks.iterate(maxIterations);
DataSet<Tuple2<Long, Double>> newRanks = iteration
// join pages with outgoing edges and distribute rank
.join(pageLinkLists).where(0).equalTo(0).flatMap(new JoinVertexWithEdgesMatch())
// collect and sum ranks
.groupBy(0).sum(1)
// apply dampening factor
.map(new Dampener(DAMPENING_FACTOR, numPages));
DataSet<Tuple2<Long, Double>> finalPageRanks = iteration.closeWith(
newRanks,
newRanks.join(iteration).where(0).equalTo(0)
// termination condition
.filter(new EpsilonFilter()));
finalPageRanks.writeAsCsv(outputPath, "\n", " ");
// User-defined functions
public static final class JoinVertexWithEdgesMatch
implements FlatJoinFunction<Tuple2<Long, Double>, Tuple2<Long, Long[]>,
Tuple2<Long, Double>> {
@Override
public void join(<Tuple2<Long, Double> page, Tuple2<Long, Long[]> adj,
Collector<Tuple2<Long, Double>> out) {
Long[] neighbors = adj.f1;
double rank = page.f1;
double rankToDistribute = rank / ((double) neigbors.length);
for (int i = 0; i < neighbors.length; i++) {
out.collect(new Tuple2<Long, Double>(neighbors[i], rankToDistribute));
}
}
}
public static final class Dampener implements MapFunction<Tuple2<Long,Double>, Tuple2<Long,Double>> {
private final double dampening, randomJump;
public Dampener(double dampening, double numVertices) {
this.dampening = dampening;
this.randomJump = (1 - dampening) / numVertices;
}
@Override
public Tuple2<Long, Double> map(Tuple2<Long, Double> value) {
value.f1 = (value.f1 * dampening) + randomJump;
return value;
}
}
public static final class EpsilonFilter
implements FilterFunction<Tuple2<Tuple2<Long, Double>, Tuple2<Long, Double>>> {
@Override
public boolean filter(Tuple2<Tuple2<Long, Double>, Tuple2<Long, Double>> value) {
return Math.abs(value.f0.f1 - value.f1.f1) > EPSILON;
}
}
所述的PageRank程序实现上述实施例。它需要运行以下参数:--pages <path> --links <path> --output <path> --numPages <n> --iterations <n>
。
// User-defined types case class Link(sourceId: Long, targetId: Long)
case class Page(pageId: Long, rank: Double)
case class AdjacencyList(sourceId: Long, targetIds: Array[Long])
// set up execution environment val env = ExecutionEnvironment.getExecutionEnvironment
// read the pages and initial ranks by parsing a CSV file val pages = env.readCsvFile[Page](docs_1.7-SNAPSHOT_pagesInputPath)
// the links are encoded as an adjacency list: (page-id, Array(neighbor-ids)) val links = env.readCsvFile[Link](docs_1.7-SNAPSHOT_linksInputPath)
// assign initial ranks to pages val pagesWithRanks = pages.map(p => Page(p, 1.0 / numPages))
// build adjacency list from link input val adjacencyLists = links
// initialize lists
.map(e => AdjacencyList(e.sourceId, Array(e.targetId)))
// concatenate lists
.groupBy("sourceId").reduce {
(l1, l2) => AdjacencyList(l1.sourceId, l1.targetIds ++ l2.targetIds)
}
// start iteration val finalRanks = pagesWithRanks.iterateWithTermination(maxIterations) {
currentRanks =>
val newRanks = currentRanks
// distribute ranks to target pages
.join(adjacencyLists).where("pageId").equalTo("sourceId") {
(page, adjacent, out: Collector[Page]) =>
for (targetId <- adjacent.targetIds) {
out.collect(Page(targetId, page.rank / adjacent.targetIds.length))
}
}
// collect ranks and sum them up
.groupBy("pageId").aggregate(SUM, "rank")
// apply dampening factor
.map { p =>
Page(p.pageId, (p.rank * DAMPENING_FACTOR) + ((1 - DAMPENING_FACTOR) / numPages))
}
// terminate if no rank update was significant
val termination = currentRanks.join(newRanks).where("pageId").equalTo("pageId") {
(current, next, out: Collector[Int]) =>
// check for significant update
if (math.abs(current.rank - next.rank) > EPSILON) out.collect(1)
}
(newRanks, termination)
}
val result = finalRanks
// emit result result.writeAsCsv(outputPath, "\n", " ")
he PageRank program implements the above example. It requires the following parameters to run: --pages <path> --links <path> --output <path> --numPages <n> --iterations <n>
.
输入文件是纯文本文件,必须格式如下:
页面表示为由新行字符分隔的(长)ID。
- 例如,
"1\n2\n12\n42\n63\n"
给出五个页面ID为1,2,12,42和63的页面。
- 例如,
链接表示为由空格字符分隔的页面ID对。链接由换行符分隔:
- 例如,
"1 2\n2 12\n1 12\n42 63\n"
给出四个(定向)链接(1) - >(2),(2) - >(12),(1) - >(12)和(42) - >(63)。
- 例如,
对于这个简单的实现,要求每个页面至少有一个传入链接和一个传出链接(页面可以指向自身)。
连接组件
连通分量算法通过为同一连接部分中的所有顶点分配相同的组件ID来识别较大图形的部分。与PageRank类似,Connected Components是一种迭代算法。在每个步骤中,每个顶点将其当前组件ID传播到其所有邻居。如果顶点小于其自己的组件ID,则顶点接受来自邻居的组件ID。
此实现使用增量迭代:未更改其组件ID的顶点不参与下一步。这会产生更好的性能,因为后面的迭代通常只处理一些异常值顶点。
// read vertex and edge data
DataSet<Long> vertices = getVertexDataSet(env);
DataSet<Tuple2<Long, Long>> edges = getEdgeDataSet(env).flatMap(new UndirectEdge());
// assign the initial component IDs (equal to the vertex ID)
DataSet<Tuple2<Long, Long>> verticesWithInitialId = vertices.map(new DuplicateValue<Long>());
// open a delta iteration
DeltaIteration<Tuple2<Long, Long>, Tuple2<Long, Long>> iteration =
verticesWithInitialId.iterateDelta(verticesWithInitialId, maxIterations, 0);
// apply the step logic:
DataSet<Tuple2<Long, Long>> changes = iteration.getWorkset()
// join with the edges
.join(edges).where(0).equalTo(0).with(new NeighborWithComponentIDJoin())
// select the minimum neighbor component ID
.groupBy(0).aggregate(Aggregations.MIN, 1)
// update if the component ID of the candidate is smaller
.join(iteration.getSolutionSet()).where(0).equalTo(0)
.flatMap(new ComponentIdFilter());
// close the delta iteration (delta and new workset are identical)
DataSet<Tuple2<Long, Long>> result = iteration.closeWith(changes, changes);
// emit result
result.writeAsCsv(outputPath, "\n", " ");
// User-defined functions
public static final class DuplicateValue<T> implements MapFunction<T, Tuple2<T, T>> {
@Override
public Tuple2<T, T> map(T vertex) {
return new Tuple2<T, T>(vertex, vertex);
}
}
public static final class UndirectEdge
implements FlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Long>> {
Tuple2<Long, Long> invertedEdge = new Tuple2<Long, Long>();
@Override
public void flatMap(Tuple2<Long, Long> edge, Collector<Tuple2<Long, Long>> out) {
invertedEdge.f0 = edge.f1;
invertedEdge.f1 = edge.f0;
out.collect(edge);
out.collect(invertedEdge);
}
}
public static final class NeighborWithComponentIDJoin
implements JoinFunction<Tuple2<Long, Long>, Tuple2<Long, Long>, Tuple2<Long, Long>> {
@Override
public Tuple2<Long, Long> join(Tuple2<Long, Long> vertexWithComponent, Tuple2<Long, Long> edge) {
return new Tuple2<Long, Long>(edge.f1, vertexWithComponent.f1);
}
}
public static final class ComponentIdFilter
implements FlatMapFunction<Tuple2<Tuple2<Long, Long>, Tuple2<Long, Long>>,
Tuple2<Long, Long>> {
@Override
public void flatMap(Tuple2<Tuple2<Long, Long>, Tuple2<Long, Long>> value,
Collector<Tuple2<Long, Long>> out) {
if (value.f0.f1 < value.f1.f1) {
out.collect(value.f0);
}
}
}
该ConnectedComponents程序实现上述实施例。它需要运行以下参数:--vertices <path> --edges <path> --output <path> --iterations <n>
。
// set up execution environment val env = ExecutionEnvironment.getExecutionEnvironment
// read vertex and edge data
// assign the initial components (equal to the vertex id) val vertices = getVerticesDataSet(env).map { id => (id, id) }
// undirected edges by emitting for each input edge the input edges itself and an inverted
// version val edges = getEdgesDataSet(env).flatMap { edge => Seq(edge, (edge._2, edge._1)) }
// open a delta iteration val verticesWithComponents = vertices.iterateDelta(vertices, maxIterations, Array(0)) {
(s, ws) =>
// apply the step logic: join with the edges
val allNeighbors = ws.join(edges).where(0).equalTo(0) { (vertex, edge) =>
(edge._2, vertex._2)
}
// select the minimum neighbor
val minNeighbors = allNeighbors.groupBy(0).min(1)
// update if the component of the candidate is smaller
val updatedComponents = minNeighbors.join(s).where(0).equalTo(0) {
(newVertex, oldVertex, out: Collector[(Long, Long)]) =>
if (newVertex._2 < oldVertex._2) out.collect(newVertex)
}
// delta and new workset are identical
(updatedComponents, updatedComponents)
}
verticesWithComponents.writeAsCsv(outputPath, "\n", " ")
这个PageRank程序实现了上面的例子。它需要运行以下参数:--pages <path> --links <path> --output <path> --numPages <n> --iterations <n>
。
输入文件是纯文本文件,必须格式如下:
顶点表示为ID并用换行符分隔。
- 例如,
"1\n2\n12\n42\n63\n"
给出五个顶点(1),(2),(12),(42)和(63)。
- 例如,
边缘表示为由空格字符分隔的顶点ID的对。边线由换行符分隔:
- 例如,
"1 2\n2 12\n1 12\n42 63\n"
给出四个(无向)链路(1) - (2),(2) - (12),(1) - (12)和(42) - (63)。
- 例如,