1. 什么是Lambda表达式?
- Lambda 表达式,是一个匿名函数,也可称为闭包。
- 我们可以把 Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递)
- Lambda 允许把函数作为一个方法的参数
- Lambda表达式的本质:作为函数式接口的实例,匿名实现类的对象
- 使用 Lambda 表达式可以使代码变的更加简洁紧凑。
- 学习Lambda要打好基础,接口的多态引用很重要。
2. lambda 表达式的语法格式
lambda 表达式的语法格式如下:
(parameters) -> expression
或
(parameters) ->{ statements; }
以下是lambda表达式的重要特征:
- 可选类型声明:Lambda 表达式中无需指定类型,程序依然可以编译,这是因为 javac 根据程序 的上下文,在后台推断出了参数的类型。Lambda 表达式的类型依赖于 上下文环境,是由编译器推断出来的。这就是所谓的“类型推断”。
- 可选的参数圆括号():一个参数无需定义圆括号,但多个参数需要定义圆括号。
- 可选的大括号{}:如果主体包含了一个语句,就不需要使用大括号。
- 可选的return返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定明表达式返回了一个数值
- 左边:lambda形参列表 (其实就是接口中的抽象方法的形参列表)
- 右边:lambda体 (其实就是重写的抽象方法的方法体)
Lambda 表达式的简单例子:
// 1. 不需要参数,返回值为 5
() -> 5
// 2. 接收一个参数(数字类型),返回其2倍的值
x -> 2 * x
// 3. 接受2个参数(数字),并返回他们的差值
(x, y) -> x – y
// 4. 接收2个int型整数,返回他们的和
(int x, int y) -> x + y
// 5. 接受一个 string 对象,并在控制台打印,不返回任何值(看起来像是返回void)
(String s) -> System.out.print(s)
public class Java8Tester {
public static void main(String args[]){
Java8Tester tester = new Java8Tester();
// 类型声明
MathOperation addition = (int a, int b) -> a + b;
// 不用类型声明
MathOperation subtraction = (a, b) -> a - b;
// 大括号中的返回语句
MathOperation multiplication = (int a, int b) -> { return a * b; };
// 没有大括号及返回语句
MathOperation division = (int a, int b) -> a / b;
System.out.println("10 + 5 = " + tester.operate(10, 5, addition));
System.out.println("10 - 5 = " + tester.operate(10, 5, subtraction));
System.out.println("10 x 5 = " + tester.operate(10, 5, multiplication));
System.out.println("10 / 5 = " + tester.operate(10, 5, division));
// 不用括号
GreetingService greetService1 = message -> System.out.println("Hello " + message);
// 用括号
GreetingService greetService2 = (message) -> System.out.println("Hello " + message);
greetService1.sayMessage("World");
greetService2.sayMessage("China");
}
interface MathOperation {
int operation(int a, int b);
}
interface GreetingService {
void sayMessage(String message);
}
private int operate(int a, int b, MathOperation mathOperation){
return mathOperation.operation(a, b);
}
}
另外一些案例:
import org.junit.Test;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.function.Consumer;
public class LambdaTest1 {
//语法格式一:无参,无返回值
@Test
public void test1(){
Runnable r1 = new Runnable() {
@Override
public void run() {
System.out.println("我爱北京天安门");
}
};
r1.run();
System.out.println("***********************");
Runnable r2 = () -> {
System.out.println("我爱北京故宫");
};
r2.run();
System.out.println("-----------test1 end-----------------");
}
//语法格式二:Lambda 需要一个参数,但是没有返回值。
@Test
public void test2(){
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con.accept("谎言和誓言的区别是什么?");
System.out.println("*******************");
Consumer<String> con1 = (String s) -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("-----------test2 end-----------------");
}
//语法格式三:数据类型可以省略,因为可由编译器推断得出,称为“类型推断”
@Test
public void test3(){
Consumer<String> con1 = (String s) -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("*******************");
Consumer<String> con2 = (s) -> {
System.out.println(s);
};
con2.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("-----------test3 end-----------------");
}
//语法格式四:Lambda 若只需要一个参数时,参数的小括号可以省略
@Test
public void test5(){
Consumer<String> con1 = (s) -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("*******************");
Consumer<String> con2 = s -> {
System.out.println(s);
};
con2.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("-----------test5 end-----------------");
}
//语法格式五:Lambda 需要两个或以上的参数,多条执行语句,并且可以有返回值
@Test
public void test6(){
Comparator<Integer> com1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
}
};
System.out.println(com1.compare(12,21));
System.out.println("*****************************");
Comparator<Integer> com2 = (o1,o2) -> {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
};
System.out.println(com2.compare(12,6));
System.out.println("-----------test6 end-----------------");
}
//语法格式六:当 Lambda 体只有一条语句时,return 与大括号若有,都可以省略
@Test
public void test7(){
Comparator<Integer> com1 = (o1,o2) -> {
return o1.compareTo(o2);
};
System.out.println(com1.compare(12,6));
System.out.println("*****************************");
Comparator<Integer> com2 = (o1,o2) -> o1.compareTo(o2);
System.out.println(com2.compare(2,21));
System.out.println("-----------test7 end-----------------");
}
@Test
public void test8(){
Consumer<String> con1 = s -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("*****************************");
Consumer<String> con2 = s -> System.out.println(s);
con2.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("-----------test8 end-----------------");
}
}
3. 函数式(Functional)接口
- 只包含一个抽象方法的接口,称为函数式接口。
- 你可以通过 Lambda 表达式来创建该接口的对象。(若 Lambda 表达式 抛出一个受检异常(即:非运行时异常),那么该异常需要在目标接口的抽象方法上进行声明)。
- 我们可以在一个接口上使用 @FunctionalInterface 注解,这样做可以检查它是否是一个函数式接口。同时 javadoc 也会包含一条声明,说明这个接口是一个函数式接口。
- 在java.util.function包下定义了Java 8 的丰富的函数式接口
- Java从诞生日起就是一直倡导“一切皆对象”,在Java里面面向对象(OOP) 编程是一切。但是随着python、scala等语言的兴起和新技术的挑战,Java不得不做出调整以便支持更加广泛的技术要求,也即java不但可以支持OOP还 可以支持OOF(面向函数编程)
- 在函数式编程语言当中,函数被当做一等公民对待。在将函数作为一等公民的 编程语言中,Lambda表达式的类型是函数。但是在Java8中,有所不同。在 Java8中,Lambda表达式是对象,而不是函数,它们必须依附于一类特别的 对象类型——函数式接口。
- 简单的说,在Java8中,Lambda表达式就是一个函数式接口的实例,匿名实现类的对象。这就是 Lambda表达式和函数式接口的关系。也就是说,只要一个对象是函数式接口的实例,那么该对象就可以用Lambda表达式来表示。所以以前用匿名实现类表示的现在都可以用Lambda表达式来写。
4. Java 内置四大核心函数式接口
使用消费型接口 Consumer void accept(T t)案例:
@Test
public void test1(){
happyTime(500, new Consumer<Double>() {
@Override
public void accept(Double aDouble) {
System.out.println("学习太累了,去买了瓶矿泉水,价格为:" + aDouble);
}
});
System.out.println("********************");
//Lambda重写
happyTime(400,money -> System.out.println("学习太累了,去买了瓶矿泉水,价格为:" + money));
}
public void happyTime(double money, Consumer<Double> con){
con.accept(money);
}
使用Lambda表达式,过滤数据案例:
@Test
public void test2(){
List<String> list = Arrays.asList("北京","杭州","南京","湖北","湖南","天津","东京","西京","普京");
List<String> filterStrs = filterString(list, new Predicate<String>() {
@Override
public boolean test(String s) {
return s.contains("京");
}
});
System.out.println(filterStrs);
//Lambda重写
List<String> filterStrs1 = filterString(list,s -> s.contains("京"));
System.out.println(filterStrs1);
}
//根据给定的规则,过滤集合中的字符串。此规则由Predicate的方法决定
public List<String> filterString(List<String> list, Predicate<String> pre){
ArrayList<String> filterList = new ArrayList<>();
for(String s : list){
if(pre.test(s)){
filterList.add(s);
}
}
return filterList;
}
5. 方法引用(Method References)
- 当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用! 减少代码,代码复用!!!
- 方法引用可以看做是Lambda表达式深层次的表达。换句话说,方法引用就 是Lambda表达式,也就是函数式接口的一个实例,通过方法的名字来指向 一个方法,可以认为是Lambda表达式的一个语法糖。
- 要求:实现接口的抽象方法的参数列表和返回值类型,必须与方法引用的 方法的参数列表和返回值类型保持一致!
- 格式:使用操作符 “::” 将类(或对象) 与 方法名分隔开来。
- 如下三种主要使用情况:
- 对象::实例方法名
- 类::静态方法名
- 类::实例方法名
使用核心函数接口实现方法引用:
import org.junit.Test;
import java.io.PrintStream;
import java.util.Comparator;
import java.util.function.BiPredicate;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Supplier;
public class MethodRefTest {
// 情况一:对象 :: 实例方法
//Consumer中的void accept(T t)
//PrintStream中的void println(T t)
@Test
public void test1() {
//lambda原生实现
Consumer<String> con1 = str -> System.out.println(str);
con1.accept("北京");
System.out.println("****");
//方法引用实现
PrintStream ps = System.out;
Consumer<String> con2 = ps::println;
con2.accept("beijing");
System.out.println("----------- test1() -------------");
}
//Supplier中的T get()
//Employee中的String getName()
@Test
public void test2() {
Employee emp = new Employee(1001,"Tom",23,5600);
Supplier<String> sup1 = () -> emp.getName();
System.out.println(sup1.get());
System.out.println("****");
Supplier<String> sup2 = emp::getName;
System.out.println(sup2.get());
System.out.println("----------- test2() -------------");
}
// 情况二:类 :: 静态方法
//Comparator中的int compare(T t1,T t2)
//Integer中的int compare(T t1,T t2)
@Test
public void test3() {
Comparator<Integer> com1 = (t1,t2) -> Integer.compare(t1,t2);
System.out.println(com1.compare(12,21));
System.out.println("****");
Comparator<Integer> com2 = Integer::compare;
System.out.println(com2.compare(12,3));
System.out.println("----------- test3() -------------");
}
//Function中的R apply(T t)
//Math中的Long round(Double d)
@Test
public void test4() {
Function<Double,Long> func = new Function<Double, Long>() {
@Override
public Long apply(Double d) {
return Math.round(d);
}
};
System.out.println(func.apply(12.7));
System.out.println("****");
Function<Double,Long> func1 = d -> Math.round(d);
System.out.println(func1.apply(12.3));
System.out.println("****");
Function<Double,Long> func2 = Math::round;
System.out.println(func2.apply(12.6));
System.out.println("----------- test4() -------------");
}
// 情况三:类 :: 实例方法 (有难度)
// Comparator中的int comapre(T t1,T t2)
// String中的int t1.compareTo(t2)
@Test
public void test5() {
Comparator<String> com1 = (s1,s2) -> s1.compareTo(s2);
System.out.println(com1.compare("abc","abd"));
System.out.println("****");
Comparator<String> com2 = String :: compareTo;
System.out.println(com2.compare("abd","abf"));
System.out.println("----------- test5() -------------");
}
//BiPredicate中的boolean test(T t1, T t2);
//String中的boolean t1.equals(t2)
@Test
public void test6() {
BiPredicate<String,String> pre1 = (s1,s2) -> s1.equals(s2);
System.out.println(pre1.test("abc","abc"));
System.out.println("****");
BiPredicate<String,String> pre2 = String :: equals;
System.out.println(pre2.test("abc","abd"));
System.out.println("----------- test6() -------------");
}
// Function中的R apply(T t)
// Employee中的String getName();
@Test
public void test7() {
Employee employee = new Employee(1001, "Jerry", 23, 6000);
Function<Employee,String> func1 = e -> e.getName();
System.out.println(func1.apply(employee));
System.out.println("****");
Function<Employee,String> func2 = Employee::getName;
System.out.println(func2.apply(employee));
System.out.println("----------- test7() -------------");
}
}
6. 构造器引用
- 格式: ClassName::new 与函数式接口相结合,自动与函数式接口中方法兼容。
- 可以把构造器引用赋值给定义的方法,要求构造器参数列表要与接口中抽象 方法的参数列表一致!且方法的返回值即为构造器对应类的对象。
package Random_name.sgm.day12.src.com.atguigu.java2;
import org.junit.Test;
import java.util.Arrays;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.util.function.Supplier;
/**
* 一、构造器引用
* 和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致。
* 抽象方法的返回值类型即为构造器所属的类的类型
*
* 二、数组引用
* 大家可以把数组看做是一个特殊的类,则写法与构造器引用一致。
*/
public class ConstructorRefTest {
//构造器引用
//Supplier中的T get()
//Employee的空参构造器:Employee()
@Test
public void test1(){
Supplier<Employee> sup = new Supplier<Employee>() {
@Override
public Employee get() {
return new Employee();
}
};
System.out.println("****");
Supplier<Employee> sup1 = () -> new Employee();
System.out.println(sup1.get());
System.out.println("****");
Supplier<Employee> sup2 = Employee :: new;
System.out.println(sup2.get());
System.out.println("------------ test1() ----------");
}
//Function中的R apply(T t)
@Test
public void test2(){
Function<Integer,Employee> func1 = id -> new Employee(id);
Employee employee = func1.apply(1001);
System.out.println(employee);
System.out.println("****");
Function<Integer,Employee> func2 = Employee :: new;
Employee employee1 = func2.apply(1002);
System.out.println(employee1);
System.out.println("------------ test2() ----------");
}
//BiFunction中的R apply(T t,U u)
@Test
public void test3(){
BiFunction<Integer,String,Employee> func1 = (id,name) -> new Employee(id,name);
System.out.println(func1.apply(1001,"Tom"));
System.out.println("****");
BiFunction<Integer,String,Employee> func2 = Employee :: new;
System.out.println(func2.apply(1002,"Tom"));
System.out.println("------------ test3() ----------");
}
}
7. 数组引用
- 格式: type[] :: new
//数组引用
//Function中的R apply(T t)
@Test
public void test4(){
Function<Integer,String[]> func1 = length -> new String[length];
String[] arr1 = func1.apply(5);
System.out.println(Arrays.toString(arr1));
System.out.println("****");
Function<Integer,String[]> func2 = String[] :: new;
String[] arr2 = func2.apply(10);
System.out.println(Arrays.toString(arr2));
System.out.println("------------ test4() ----------");
}