基本语句
- 模型放到GPU上运行 model.gpu(), 默认只使用一个GPU
- 张量放到GPU上 mytensor = my_tensor.gpu()
- 多个GPU调用: model = nn.DataParallel(model)
- model = Model(input_size, output_size)
- if torch.cuda.device_count() > 1:
-   print("Let's use", torch.cuda.device_count(), "GPUs!")
-   # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
-   model = nn.DataParallel(model)
- if torch.cuda.is_available():
-    model.cuda()
- for data in rand_loader:
-     if torch.cuda.is_available():
-         input_var = Variable(data.cuda())
-     else:
-         input_var = Variable(data)
-     output = model(input_var)
-     print("Outside: input size", input_var.size(),
-           "output_size", output.size())