# Create input datawith tf.device("/cpu:0"):train_glob = os.path.join(RECORDS_ROOT, "train/*/*.JPEG")train_files = glob.glob(train_glob)if not train_files:raise RuntimeError("No training images found with glob '{}'.".format(train_glob))train_dataset = tf.data.Dataset.from_tensor_slices(train_files)train_dataset = train_dataset.shuffle(buffer_size=len(train_files)).repeat()train_dataset = train_dataset.map(read_png, num_parallel_calls=configs.dataset.NUM_PREPROCESS_THREADS)train_dataset = train_dataset.map(lambda x: tf.random_crop(x, (configs.dataset.crop_size[0], configs.dataset.crop_size[1], 3)))train_dataset = train_dataset.batch(configs.dataset.batch_size)train_dataset = train_dataset.prefetch(32)num_pixels = configs.dataset.batch_size * configs.dataset.crop_size[0] * configs.dataset.crop_size[1]# Get training patch from datasetx = train_dataset.make_one_shot_iterator().get_next()
Tensorflow: 1.14.0
