- 数据库的三范式
- 超键、候选键、主键、外键分别是什么?
- SQL约束有哪几种?
- MySQL 中的 varchar 和 char 有什么区别?
- MySQL中 in 和 exists 区别
- 什么是存储过程
- MySQL执行查询的过程
- MySQL支持哪些存储引擎
- 聚集索引和非聚集索引的区别
- 为什么建议InnoDB必须建主键,并且推荐使用整型的自增主键?
- InnoDB索引结构
- 最左前缀原则
- 什么是数据库事务
- 事务的四个特征
- MySQL的四种隔离级别
- 脏读、幻读、不可重复读
- InnoDB如何实现事务
- MySQL是如何实现事务隔离的
- 什么是MVCC
- MVCC的实现原理
- 为什么要加锁
- 按照锁的粒度分数据库锁有哪些?
- 从锁的类别上面分MySQL都有哪些锁
- 数据库的乐观锁和悲观锁是什么,怎么实现的
- 隔离级别与锁的关系
数据库的三范式
- 第一范式:强调的是列的原子性,即数据库表的每一列都是不可分割的原子数据项。
- 第二范式:要求实体的属性完全依赖于主关键字。所谓完全 依赖是指不能存在仅依赖主关键字一部分的属性。
-
超键、候选键、主键、外键分别是什么?
超键:在关系中能唯一标识元组的属性集称为关系模式的超键。一个属性可以为作为一个超键,多个属性组合在一起也可以作为一个超键。超键包含候选键和主键。
- 候选键:是最小超键,即没有冗余元素的超键。
- 主键:数据库表中对储存数据对象予以唯一和完整标识的数据列或属性的组合。一个数据列只能有一个主键,且主键的取值不能缺失,即不能为空值(Null)。
-
SQL约束有哪几种?
NOT NULL: 用于控制字段的内容一定不能为空(NULL)。
- UNIQUE: 控件字段内容不能重复,一个表允许有多个 Unique 约束。
- PRIMARY KEY: 也是用于控件字段内容不能重复,但它在一个表只允许出现一个。
- FOREIGN KEY: 用于预防破坏表之间连接的动作,也能防止非法数据插入外键列,因为它必须是它指向的那个表中的值之一。
- CHECK: 用于控制字段的值范围。
MySQL 中的 varchar 和 char 有什么区别?
char 是一个定长字段,假如申请了char(10)
的空间,那么无论实际存储多少内容.该字段都占用 10 个字符,而 varchar 是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间.
在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用 char,否则应该尽量使用 varchar.例如存储用户 MD5 加密后的密码,则应该使用 char。
MySQL中 in 和 exists 区别
MySQL中的in语句是把外表和内表作hash 连接,而exists语句是对外表作loop循环,每次loop循环再对内表进行查询。一直大家都认为exists比in语句的效率要高,这种说法其实是不准确的。这个是要区分环境的。
如果查询的两个表大小相当,那么用in和exists差别不大。
如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in。
not in 和not exists:如果查询语句使用了not in,那么内外表都进行全表扫描,没有用到索引;而not extsts的子查询依然能用到表上的索引。所以无论那个表大,用not exists都比not in要快。
什么是存储过程
存储过程是一些预编译的 SQL 语句。
1、更加直白的理解:存储过程可以说是一个记录集,它是由一些 T-SQL 语句组成的代码块,这些 T-SQL 语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。
2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量 T_SQL 语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全
但是,在互联网项目中,其实是不太推荐存储过程的,比较出名的就是阿里的《Java 开发手册》中禁止使用存储过程,我个人的理解是,在互联网项目中,迭代太快,项目的生命周期也比较短,人员流动相比于传统的项目也更加频繁,在这样的情况下,存储过程的管理确实是没有那么方便,同时,复用性也没有写在服务层那么好。
MySQL执行查询的过程
- 客户端通过 TCP 连接发送连接请求到 MySQL 连接器,连接器会对该请求进行权限验证及连接资源分配
- 查缓存。(当判断缓存是否命中时,MySQL 不会进行解析查询语句,而是直接使用 SQL 语句和客户端发送过来的其他原始信息。所以,任何字符上的不同,例如空格、注解等都会导致缓存的不命中。)
- 语法分析(SQL 语法是否写错了)。 如何把语句给到预处理器,检查数据表和数据列是否存在,解析别名看是否存在歧义。
- 优化。是否使用索引,生成执行计划。
- 交给执行器,将数据保存到结果集中,同时会逐步将数据缓存到查询缓存中,最终将结果集返回给客户端。
MySQL支持哪些存储引擎
MySQL 支持多种存储引擎,比如 InnoDB,MyISAM,Memory,Archive 等等.在大多数的情况下,直接选择使用 InnoDB 引擎都是最合适的,InnoDB 也是 MySQL 的默认存储引擎。
MyISAM 和 InnoDB 的区别有哪些:
- InnoDB 支持事务,MyISAM 不支持
- InnoDB 支持外键,而 MyISAM 不支持
- InnoDB 是聚集索引,数据文件是和索引绑在一起的,必须要有主键,通过主键索引效率很高;MyISAM 是非聚集索引,数据文件是分离的,索引保存的是数据文件的指针,主键索引和辅助索引是独立的。
- Innodb 不支持全文索引,而 MyISAM 支持全文索引,查询效率上 MyISAM 要高;
- InnoDB 不保存表的具体行数,MyISAM 用一个变量保存了整个表的行数。
MyISAM 采用表级锁(table-level locking);InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁。
聚集索引和非聚集索引的区别
聚集索引的叶子节点包含了完整的数据记录
-
为什么建议InnoDB必须建主键,并且推荐使用整型的自增主键?
如果你没有建主键,他会帮你找一个主键,从表里面逐列去找一个列,这个列里面的数据是所有的数据都不重样。可以添加一个唯一索引。找到的话,他会用这一列的数据来组织你这个表的所有数据,用哪一个索引来建一个B+数的结构 来组织你表里的所有数据,如果你那个表里找不到这样的列,MySQL会自动给你找个隐藏列(row id)如12345,帮你自动维护这整张表的B+数的数据结构。自己建立主键,可减少MySQL的工作,提升性能。
因为索引是排好序的数据结构。如果是插入元素的话可能会导致节点的分裂,树可能还要做平衡而自增的话,树就可以直接新增节点,新增节点的效率一定会大于节点分裂再平衡。这就是需要自增主键的原因。
InnoDB索引结构
索引是帮助MySQL高效获取数据的排好序的数据结构。
索引数据结构:二叉树、红黑树、Hash表、B+树
MySQL索引使用的是B+树,因为索引是用来加快查询的,而B+树通过对数据进行排序所所以是可以提高查询速度的,然后通过一个节点可以存储多个元素,从而可以使得B+树的高度不会太高,在MySQL中一个InnoDB页就是一个B+树节点,一个InnoDB页默认16kb,所以一般情况下一棵两层的B+树可以存2000万行左右的数据,然后通过利用B+树叶子节点村存储了所有数据且进行了排序,叶子节点之间又指针,可以很好的支持全表查询,范围查找等SQL语句。Hash
对索引的Key进行一次Hash计算就可以定位出数据存储的位置
- 很多时候Hash索引比B+树索引更高效
- 仅能满足 “=”,”IN”,不支持查询
- Hash冲突问题
B树
- 叶节点具有相同的深度,叶节点的指针为空
- 所有索引元素不重复
- 节点中的数据索引从左到右递增排列
B+树
- 非叶子节点不存储Data,只存储索引(冗余),非叶子节点可以放更多的索引
- 叶子节点包含所有索引字段
- 叶子节点用指针连接,提高区间访问的性能。
最左前缀原则
使用联合索引时,必须依次按照建立联合索引的顺序使用,不能跳过,也不能不用
以name、age、position建立联合索引,在4.5.6行中的代码,只有4走索引
内部存储时先按照name排序,name相同再按照age排序,age相同再按照position排序。如果跳过某个字段,则无法使用索引。
什么是数据库事务
事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是逻辑上的一组操作,要么都执行,要么都不执行。
事务最经典也经常被拿出来说例子就是转账了。
假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。
自己理解:
按照能量守恒定律,不会凭空产生也不会凭空消失,事务也是如此,在一个大系统中,比如转账,钱只会从一个人的账户中转向另外一个人的账户中,不会凭空转入也不会凭空转出
事务的四个特征
ACID
- Atomicity:原子性,事务是数据库的逻辑工作单位,事务中包含的各操作要么都做,要么都不做
- Consistency:一致性:事务执行的结果必须是使数据库从一个一致性状态变到另一个一致性状态。因此当数据库只包含成功事务提交的结果时,就说数据库处于一致性状态。如果数据库系统 运行中发生故障,有些事务尚未完成就被迫中断,这些未完成事务对数据库所做的修改有一部分已写入物理数据库,这时数据库就处于一种不正确的状态,或者说是 不一致的状态。
- Isolation:隔离性:一个事务的执行不能其它事务干扰。即一个事务内部的//操作及使用的数据对其它并发事务是隔离的,并发执行的各个事务之间不能互相干扰。
Durability:持久性:指一个事务一旦提交,它对数据库中的数据的改变就应该是永久性的。接下来的其它操作或故障不应该对其执行结果有任何影响。
MySQL的四种隔离级别
读未提交 Read Uncommitted
在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。本隔离级别很少用于实际应用,因为它的性能也不比其他级别好多少。读取未提交的数据,也被称之为脏读(Dirty Read)。
- 读已提交 Read Committed
这是大多数数据库系统的默认隔离级别(但不是 MySQL 默认的)。它满足了隔离的简单定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别 也支持所谓 的 不可重复读(Nonrepeatable Read),因为同一事务的其他实例在该实例处理其间可能会有新的 commit,所以同一 select 可能返回不同结果。
- 可重复读 Repeatable Read
这是 MySQL 的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读 (Phantom Read)。
- 串行化 Serializable
通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。简言之,它是在每个读的数据行上加上共享锁。在这个级别,可能导致大量的超时现象和锁竞争。
MySQL 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别事务隔离机制的实现基于锁机制和并发调度。其中并发调度使用的是MVVC(多版本并发控制),通过保存修改的旧版本信息来支持并发一致性读和回滚等特性。
因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内容):,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读)并不会有任何性能损失。
InnoDB 存储引擎在 分布式事务 的情况下一般会用到SERIALIZABLE(可串行化)隔离级别。
脏读、幻读、不可重复读
- 脏读:事务 A 读取了事务 B 更新的数据,然后 B 回滚操作,那么 A 读取到的数据是脏数据
- 不可重复读:事务 A 多次读取同一数据,事务 B 在事务 A 多次读取的过程中,对数据作了更新并提交,导致事务 A 多次读取同一数据时,结果 不一致。
- 幻读:系统管理员 A 将数据库中所有学生的成绩从具体分数改为 ABCDE 等级,但是系统管理员 B 就在这个时候插入了一条具体分数的记录,当系统管理员 A 改结束后发现还有一条记录没有改过来,就好像发生了幻觉一样,这就叫幻读。
不可重复读侧重于修改,幻读侧重于新增或删除(多了或少量行),脏读是一个事务回滚影响另外一个事务。
InnoDB如何实现事务
Innodb通过Buffer Pool、LogBuffer、Redo Log、Undo Log来实现事务,以一个updatei语句为例:
- Innodb在收到一个update语句后,会先根据条件找到数据所在的页,并将该页缓存在Buffer Pool中
- 执行updatei语句,修改Buffer Pool中的数据,也就是内存中的数据
- 针对update语句生成一个RedoLogi对象,并存入LogBuffer中
- 针对updatei语句生成undolog日志,用于事务回滚
- 如果事务提交,那么则把RedoLog对象进行持久化,后续还有其他机制将Buffer Pool中所修改的数据页持久化到磁盘中
- 如果事务回滚,则利用undolog日志进行回滚
MySQL是如何实现事务隔离的
读未提交和串行化基本上是不需要考虑的隔离级别,前者不加锁限制,后者相当于单线程执行,效率太差。
MySQL 在可重复读级别解决了幻读问题,是通过行锁和间隙锁的组合 Next-Key 锁实现的。
什么是MVCC
MVCC, 即多版本并发控制。MVCC 的实现,是通过保存数据在某个时间点的快照来实现的。根据事务开始的时间不同,每个事务对同一张表,同一时刻看到的数据可能是不一样的。
MVCC的实现原理
对于 InnoDB ,聚簇索引记录中包含 3 个隐藏的列:
- ROW ID:隐藏的自增 ID,如果表没有主键,InnoDB 会自动按 ROW ID 产生一个聚集索引树。
- 事务 ID:记录最后一次修改该记录的事务 ID。
- 回滚指针:指向这条记录的上一个版本。
我们拿上面的例子,对应解释下 MVCC 的实现原理,如下图:
如图,首先 insert 语句向表 t1 中插入了一条数据,a 字段为 1,b 字段为 1, ROW ID 也为 1 ,事务 ID 假设为 1,回滚指针假设为 null。当执行 update t1 set b=666 where a=1 时,大致步骤如下:
- 数据库会先对满足 a=1 的行加排他锁;
- 然后将原记录复制到 undo 表空间中;
- 修改 b 字段的值为 666,修改事务 ID 为 2;
- 并通过隐藏的回滚指针指向 undo log 中的历史记录;
- 事务提交,释放前面对满足 a=1 的行所加的排他锁。
在前面实验的第 6 步中,session2 查询的结果是 session1 修改之前的记录,这个记录就是来自 undolog 中。
因此可以总结出 MVCC 实现的原理大致是:
InnoDB 每一行数据都有一个隐藏的回滚指针,用于指向该行修改前的最后一个历史版本,这个历史版本存放在 undo log 中。如果要执行更新操作,会将原记录放入 undo log 中,并通过隐藏的回滚指针指向 undo log 中的原记录。其它事务此时需要查询时,就是查询 undo log 中这行数据的最后一个历史版本。
MVCC 最大的好处是读不加锁,读写不冲突,极大地增加了 MySQL 的并发性。通过 MVCC,保证了事务 ACID 中的 I(隔离性)特性。
为什么要加锁
当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性。
保证多用户环境下保证数据库完整性和一致性。
按照锁的粒度分数据库锁有哪些?
在关系型数据库中,可以**按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。
行级锁
- 行级锁是MySQL中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。
开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
表级锁
表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。
开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁
页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。BDB支持页级锁
开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
MyISAM和InnoDB存储引擎使用的锁
MyISAM采用表级锁(table-level locking)。
InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁
从锁的类别上面分MySQL都有哪些锁
从锁的类别上来讲,有共享锁和排他锁。
共享锁: 又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。
- 排他锁: 又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。
用上面的例子来说就是用户的行为有两种,一种是来看房,多个用户一起看房是可以接受的。 一种是真正的入住一晚,在这期间,无论是想入住的还是想看房的都不可以。
锁的粒度取决于具体的存储引擎,InnoDB实现了行级锁,页级锁,表级锁。
他们的加锁开销从大到小,并发能力也是从大到小。
数据库的乐观锁和悲观锁是什么,怎么实现的
数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。
- 悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制
- 乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。实现方式:乐观锁一般会使用版本号机制或CAS算法实现。
两种锁的使用场景
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。
隔离级别与锁的关系
- 在Read Uncommitted级别下,读取数据不需要加共享锁,这样就不会跟被修改的数据上的排他锁冲突
- 在Read Committed级别下,读操作需要加共享锁,但是在语句执行完以后释放共享锁;
- 在Repeatable Read级别下,读操作需要加共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁。
- SERIALIZABLE 是限制性最强的隔离级别,因为该级别锁定整个范围的键,并一直持有锁,直到事务完成。