什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”?

Java虚拟机是一个可以执行Java字节码的虚拟机进程。
Java源文件被编译成能被Java虚拟机执行的字节码文件。 Java被设计成允许应用程序可以运行在任意的平台,而不需要程序员为每一个平台单独重写或者是重新编译。Java虚拟机让这个变为可能,因为它知道底层硬件平台的指令长度和其他特性。

Java内存结构

方法区和堆是所有线程共享的内存区域;而java栈、本地方法栈和程序员计数器是运行是线程私有的内
存区域。

Java堆(Heap)

Java堆是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分
配内存。

方法区(Method Area)

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。

程序计数器(Program Counter Register)

程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。

JVM栈(JVM Stacks)

栈与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(Stack Frame)用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

本地方法栈(Native Method Stacks)

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。

Java内存分配

  • 寄存器:我们无法控制。
  • 静态域:static 定义的静态成员。
  • 常量池:编译时被确定并保存在 .class 文件中的(final)常量值和一些文本修饰的符号引用(类和

接口的全限定名,字段的名称和描述符,方法和名称和描述符)。

  • 非 RAM 存储:硬盘等永久存储空间。
  • 堆内存:new 创建的对象和数组,由 Java 虚拟机自动垃圾回收器管理,存取速度慢。
  • 栈内存:基本类型的变量和对象的引用变量(堆内存空间的访问地址),速度快,可以共享,但是

大小与生存期必须确定,缺乏灵活性。

强引用、软引用、弱引用、虚引用是什么,有什么区别?

  • 强引用,就是普通的对象引用关系,如 String s = new String(“ConstXiong”)
  • 软引用,用于维护一些可有可无的对象。只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。SoftReference 实现
  • 弱引用,相比软引用来说,要更加无用一些,它拥有更短的生命周期,当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被弱引用关联的对象。WeakReference 实现
  • 虚引用是一种形同虚设的引用,在现实场景中用的不是很多,它主要用来跟踪对象被垃圾回收的活动。PhantomReference 实现

常量池

JVM常量池主要分为Class文件常量池、运行时常量池,全局字符串常量池,以及基本类型包装类对象常量池

  • Class文件常量池。class文件是一组以字节为单位的二进制数据流,在java代码的编译期间,我们编写的java文件就被编译为.class文件格式的二进制数据存放在磁盘中,其中就包括class文件常量池。
  • 运行时常量池:运行时常量池相对于class常量池一大特征就是具有动态性,java规范并不要求常量只能在运行时才产生,也就是说运行时常量池的内容并不全部来自class常量池,在运行时可以通过代码生成常量并将其放入运行时常量池中,这种特性被用的最多的就是String.intern()。
  • 全局字符串常量池:字符串常量池是JVM所维护的一个字符串实例的引用表,在HotSpot VM中,它是一个叫做StringTable的全局表。在字符串常量池中维护的是字符串实例的引用,底层C++实现就是一个Hashtable。这些被维护的引用所指的字符串实例,被称作”被驻留的字符串”或”interned string”或通常所说的”进入了字符串常量池的字符串”。
  • 基本类型包装类对象常量池:java中基本类型的包装类的大部分都实现了常量池技术,这些类是Byte,Short,Integer,Long,Character,Boolean,另外两种浮点数类型的包装类则没有实现。另外上面这5种整型的包装类也只是在对应值小于等于127时才可使用对象池,也即对象不负责创建和管理大于127的这些类的对象。

Heap和Stack,堆和栈有什么区别?

申请方式

stack: 由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为 b 开辟空间
heap: 需要程序员自己申请,并指明大小,在 c 中 malloc 函数,对于Java 需要手动 new Object()的形式开辟

申请后系统的响应

stack:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
heap:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

申请大小的限制

stack:栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS 下,栈的大小是 2M(默认值也取决于虚拟内存的大小),如果申请的空间超过栈的剩余空间时,将提示 overflow。因此,能从栈获得的空间较小。
heap:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的, 自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见, 堆获得的空间比较灵活,也比较大。

申请效率的比较

stack:由系统自动分配,速度较快。但程序员是无法控制的。
heap:由 new 分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

heap和stack中的存储内容

stack:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址, 然后是函数的各个参数,在大多数的 C 编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
heap:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

什么情况下会发生栈内存溢出?

  1. 栈是线程私有的,栈的生命周期和线程一样,每个方法在执行的时候就会创建一个栈帧,它包含局部变量表、操作数栈、动态链接、方法出口等信息,局部变量表又包括基本数据类型和对象的引用;
  2. 当线程请求的栈深度超过了虚拟机允许的最大深度时,会抛出StackOverFlowError异常,方法递归调用肯可能会出现该问题;
  3. 调整参数-xss去调整jvm栈的大小

什么是类加载?类加载的过程?

虚拟机把描述类的数据加载到内存里面,并对数据进行校验、解析和初始化,最终变成可以被虚拟机直接使用的class对象;
类的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7个阶段。其中准备、验证、解析3个部分统称为连接(Linking)。如图所示:
image.png
加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定)

类加载过程如下:

  • 加载,加载分为三步:

    1. 通过类的全限定性类名获取该类的二进制流;
      2. 将该二进制流的静态存储结构转为方法区的运行时数据结构;
      3. 在堆中为该类生成一个class对象;
  • 验证:验证该class文件中的字节流信息复合虚拟机的要求,不会威胁到jvm的安全;

  • 准备:为class对象的静态变量分配内存,初始化其初始值;
  • 解析:该阶段主要完成符号引用转化成直接引用;
  • 初始化:到了初始化阶段,才开始执行类中定义的java代码;初始化阶段是调用类构造器的过程;

什么是类加载?常见的类加载器有哪些?

类加载器是指:通过一个类的全限定性类名获取该类的二进制字节流叫做类加载器;类加载器分为以下四种:

  • 启动类加载器(BootStrapClassLoader):用来加载java核心类库,无法被java程序直接引用;
  • 扩展类加载器(Extension ClassLoader):用来加载java的扩展库,java的虚拟机实现会提供一个扩展库目录,该类加载器在扩展库目录里面查找并加载java类;
  • 系统类加载器(AppClassLoader):它根据java的类路径来加载类,一般来说,java应用的类都是通过它来加载的;
  • 自定义类加载器:由java语言实现,继承自ClassLoader;

image.png

什么是双亲委派模型?为什么需要双亲委派模型?

当一个类加载器收到一个类加载的请求,他首先不会尝试自己去加载,而是将这个请求委派给父类加载器去加载,只有父类加载器在自己的搜索范围类查找不到给类时,子加载器才会尝试自己去加载该类;
为了防止内存中出现多个相同的字节码;因为如果没有双亲委派的话,用户就可以自己定义一个java.lang.String类,那么就无法保证类的唯一性。

补充:那怎么打破双亲委派模型?
自定义类加载器,继承ClassLoader类,重写loadClass方法和findClass方法。

有哪几种垃圾回收器,各自的优缺点是什么?

垃圾回收器主要分为以下几种:Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1;

  • Serial:单线程的收集器,收集垃圾时,必须stop the world,使用复制算法。它的最大特点是在进行垃圾回收时,需要对所有正在执行的线程暂停(stop the world),对于有些应用是难以接受的,但是如果应用的实时性要求不是那么高,只要停顿的时间控制在N毫秒之内,大多数应用还是可以接受的,是client级别的默认GC方式。
  • ParNew: Serial收集器的多线程版本,也需要stop the world,复制算法
  • Parallel Scavenge: 新生代收集器,复制算法的收集器,并发的多线程收集器,目标是达到一个可控的吞吐量,和ParNew的最大区别是GC自动调节策略;虚拟机会根据系统的运行状态收集性能监控信息,动态设置这些参数,以提供最优停顿时间和最高的吞吐量;
  • Serial Old:Serial收集器的老年代版本,单线程收集器,使用标记整理算法。
  • Parallel Old:是Parallel Scavenge收集器的老年代版本,使用多线程,标记-整理算法。
  • CMS:是一种以获得最短回收停顿时间为目标的收集器,标记清除算法,运作过程:初始标记,并发标记,重新标记,并发清除,收集结束会产生大量空间碎片;
  • G1:标记整理算法实现,运作流程主要包括以下:初始标记,并发标记,最终标记,筛选回收。不会产生空间碎片,可以精确地控制停顿;G1将整个堆分为大小相等的多个Region(区域),G1跟踪每个区域的垃圾大小,在后台维护一个优先级列表,每次根据允许的收集时间,优先回收价值最大的区域,已达到在有限时间内获取尽可能高的回收效率;

垃圾回收器间的配合使用图:
image.png

Java中的垃圾回收算法有哪些?

java中有四种垃圾回收算法,分别是标记清除法、标记整理法、复制算法、分代收集算法;

标记-清除法:

第一步:利用可达性去遍历内存,把存活对象和垃圾对象进行标记;
第二步:在遍历一遍,将所有标记的对象回收掉;
特点:效率不行,标记和清除的效率都不高;标记和清除后会产生大量的不连续的空间分片,可能会导致之后程序运行的时候需分配大对象而找不到连续分片而不得不触发一次GC;
image.png

标记-整理法:

第一步:利用可达性去遍历内存,把存活对象和垃圾对象进行标记;
第二步:将所有的存活的对象向一段移动,将端边界以外的对象都回收掉;
特点:适用于存活对象多,垃圾少的情况;需要整理的过程,无空间碎片产生;
image.png

标记-复制算法:

简称为复制算法,将内存按照容量大小分为大小相等的两块,每次只使用一块,当一块使用完了,就将还存活的对象移到另一块上,然后在把使用过的内存空间移除;
特点:不会产生空间碎片;内存使用率极低;

分代收集算法:

根据内存对象的存活周期不同,将内存划分成几块,java虚拟机一般将内存分成新生代和老生代,在新生代中,有大量对象死去和少量对象存活,所以采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集;老年代中因为对象的存活率极高,没有额外的空间对他进行分配担保,所以采用标记清理或者标记整理算法进行回收;

对比

image.png