所谓id就是能够用作唯一标识的记号。
在我们日常的设计中,对于单体架构,我们一般使用数据库的自增Id来作为表的主键,但是对于一个分布式系统,就会出现ID冲突,所以对于分布式ID而言,也需要具备分布式系统的特点:高并发,高可用,高性能等特点。
1.分布式id实现方案
我们先看看常见的分布id解决方案以及各自特点的对比
上面提到了五种解决方案,目前流行的分布式ID解决方案有两种:「号段模式」和「雪花算法」。
1.1.uuid
这种方式很简单,在每次需要新增数据的时候,先生成一个uuid
String id=UUID.randomUUID().toString();
优点:
- 性能非常高:本地生成,没有网络消耗。
缺点:
- 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
- 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
- ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用;
1.2 数据库主键自增
我们需要专门创建一个表来存放id,
表可以设计成以下样子:CREATE TABLE SEQID.SEQUENCE_ID (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(10) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
);
在每次新增的时候,先向该表新增一条数据,然后获取返回新增的主键作为要插入的主键Id,我们可以使用下面的语句生成并获取到一个自增ID
begin;
replace into SEQUENCE_ID (stub) VALUES ('anyword');
select last_insert_id();
commit;
可能很多人读到这儿有些疑惑,stub是干嘛的?
stub字段在这里并没有什么特殊的意义,只是为了方便的去插入数据,只有能插入数据才能产生自增id。
而对于插入我们用的是replace,replace会先看是否存在stub指定值一样的数据,如果存在则先delete再insert,如果不存在则直接insert。
说这么多,可能大家还是感觉不是很直观,我们实际去操作一下。
我们去执行操作插入语句:
我们可以看到这条语句返回的是新增的主键id,我们在多执行几次这条语句。
我又执行了5次,把自增Id增加到了6,我们打开数据表看看里面长什么样子
可以看到数据库里面永远只有一条数据。
这种生成分布式ID的机制,需要一个单独的Mysql实例,虽然可行,但是基于性能与可靠性来考虑的话都不够,业务系统每次需要一个ID时,都需要请求数据库获取,性能低,并且如果此数据库实例下线了,那么将影响所有的业务系统。
1.3 Redis自增
因为Redis是单线程的,所以可以用来生成全部唯一ID,通过incr、incrby实现。
生产环境可能是Redis集群,假如有5个Redis实例,每个Redis的初始值是1,2,3,4,5,然后增长都是5
各个Redis生成的ID为:
A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25
这样的话,无论请求打到那个Redis上面,都可以获得不同的ID
下面我们实操一下,更直观的感受一下
使用redis的效率是非常高的,但是要考虑持久化的问题。Redis支持RDB和AOF两种持久化的方式。
RDB持久化相当于定时打一个快照进行持久化,如果打完快照后,连续自增了几次,还没来得及做下一次快照持久化,这个时候Redis挂掉了,重启Redis后会出现ID重复。
AOF持久化相当于对每条写命令进行持久化,如果Redis挂掉了,不会出现ID重复的现象,但是会由于incr命令过多,导致重启恢复数据时间过长。
1.4 号段模式
我们可以使用号段的方式来获取自增ID,号段可以理解成批量获取,比如DistributIdService从数据库获取ID时,如果能批量获取多个ID并缓存在本地的话,那样将大大提供业务应用获取ID的效率。
比如DistributIdService每次从数据库获取ID时,就获取一个号段,比如(1,1000],这个范围表示了1000个ID,业务应用在请求DistributIdService提供ID时,DistributIdService只需要在本地从1开始自增并返回即可,而不需要每次都请求数据库,一直到本地自增到1000时,也就是当前号段已经被用完时,才去数据库重新获取下一号段。
下面我具体去尝试实现一下:
CREATE TABLE id_generator (
id int(10) NOT NULL,
current_max_id bigint(20) NOT NULL COMMENT '当前最大id',
increment_step int(10) NOT NULL COMMENT '号段的长度',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
这个数据库表用来记录自增步长以及当前自增ID的最大值(也就是当前已经被申请的号段的最后一个值),因为自增逻辑被移到DistributIdService中去了,所以数据库不需要这部分逻辑了。
这种方案不再强依赖数据库,就算数据库不可用,那么DistributIdService也能继续支撑一段时间。但是如果DistributIdService重启,会丢失一段ID,导致ID空洞。
为了提高DistributIdService的高可用,需要做一个集群,业务在请求DistributIdService集群获取ID时,会随机的选择某一个DistributIdService节点进行获取,对每一个DistributIdService节点来说,数据库连接的是同一个数据库,那么可能会产生多个
DistributIdService节点同时请求数据库获取号段,那么这个时候需要利用乐观锁来进行控制,比如在数据库表中增加一个version字段,在获取号段时使用如下SQL:
UPDATE id_generator
SET current_max_id = #{newMaxId},
version=version+1
where version = #{version}
因为newMaxId是DistributIdService中根据oldMaxId+步长算出来的,只要上面的update更新成功了就表示号段获取成功了。
为了提供数据库层的高可用,需要对数据库使用多主模式进行部署,对于每个数据库来说要保证生成的号段不重复,这就需要利用最开始的思路,再在刚刚的数据库表中增加起始值和步长,比如如果现在是两台Mysql,那么 mysql1将生成号段(1,1001],自增的时候序列为1,3,4,5,7… mysql2将生成号段(2,1002],自增的时候序列为2,4,6,8,10…
在TinyId中还增加了一步来提高效率,在上面的实现中,ID自增的逻辑是在DistributIdService中实现的,而实际上可以把自增的逻辑转移到业务应用本地,这样对于业务应用来说只需要获取号段,每次自增时不再需要请求调用DistributIdService了。
1.5 雪花算法(snowflake)
上面的三种方法总的来说是基于自增思想的,而接下来就介绍比较著名的雪花算法-snowflake
我们可以换个角度来对分布式ID进行思考,只要能让负责生成分布式ID的每台机器在每毫秒内生成不一样的ID就行了。
snowflake是twitter开源的分布式ID生成算法,是一种算法,所以它和上面的三种生成分布式ID机制不太一样,它不依赖数据库。
核心思想是:分布式ID固定是一个long型的数字,一个long型占8个字节,也就是64个bit,原始snowflake算法中对于bit的分配如下图:
符号位为0,0表示正数,ID为正数,所以固定为0。
时间戳位不用多说,用来存放时间戳,单位是ms,时间戳部分占41bit,这个是毫秒级的时间,一般实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可以使产生的ID从更小值开始。
工作机器id位用来存放机器的id,通常分为5个区域位+5个服务器标识位。这里比较灵活,比如,可以使用前5位作为数据中心机房标识,后5位作为单机房机器标识,可以部署1024个节点。
序号位是自增。
雪花算法能存放多少数据?
时间范围:2^41 / (1000L 60 60 24 365) = 69年
工作进程范围:2^10 = 1024
序列号范围:2^12 = 4096,表示1ms可以生成4096个ID。
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。下面是推特版的Snowflake算法:
public class SnowFlake {
/**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATACENTER_BIT = 5;//数据中心占用的位数
/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
private long datacenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastStmp = -1L;//上一次时间戳
public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);
for (int i = 0; i < (1 << 12); i++) {
System.out.println(snowFlake.nextId());
}
}
}
在实际的线上使用场景里,其实很少有直接使用snowflake,而是进行了改造,因为snowflake算法中最难实践的就是工作机器id,原始的snowflake算法需要人工去为每台机器去指定一个机器id,并配置在某个地方从而让snowflake从此处获取机器id。
尤其是机器是很多的时候,人力成本太大且容易出错,所以目前很多大厂对snowflake进行了改造。
下面我们一起看看别人都是怎么去做的
1.5.1 百度(uid-generator)
uid-generator使用的就是snowflake,只是在生产机器id,也叫做workId时有所不同。
uid-generator中的workId是由uid-generator自动生成的,并且考虑到了应用部署在docker上的情况,在uid-generator中用户可以自己去定义workId的生成策略,默认提供的策略是:应用启动时由数据库分配。
说的简单一点就是:应用在启动时会往数据库表(uid-generator需要新增一个WORKER_NODE表)中去插入一条数据,数据插入成功后返回的该数据对应的自增唯一id就是该机器的workId,而数据由host,port组成。
对于uid-generator中的workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,同一个应用每重启一次就会消费一个workId。
1.5.2 美团(Leaf)
美团的Leaf也是一个分布式ID生成框架。它非常全面,即支持号段模式,也支持snowflake模式。名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个部门。
Leaf中的snowflake模式和原始snowflake算法的不同点,也主要在workId的生成,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,在启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
Leaf特性如下:
全局唯一,绝对不会出现重复的ID,且ID整体趋势递增。
高可用,服务完全基于分布式架构,即使MySQL宕机,也能容忍一段时间的数据库不可用。
高并发低延时,在CentOS 4C8G的虚拟机上,远程调用QPS可达5W+,TP99在1ms内。
接入简单,直接通过公司RPC服务或者HTTP调用即可接入。