There’s basically three ways of dealing with this.
Discard data from the more common class
丢弃数据多的数据.
Weight minority class loss values more heavily
权重少的数据损失价值更重,loss.
- Oversample the minority class
过采样.
4. 数据权重处理
torch.utils.data.WeightedRandomSampler(weights, num_samples, replacement=True, generator=None**).
Option 1 is implemented by selecting the files you include in your Dataset.
Option 2 is implemented with the pos_weight parameter for BCEWithLogitsLoss
Option 3 is implemented with a custom Sampler passed to your Dataloader