Java 类名:com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp
Python 类名:QuantileDiscretizerTrainBatchOp
功能介绍
分位点离散可以计算选定列的分位点,然后使用这些分位点进行离散化。
生成选中列对应的q-quantile,其中可以所有列指定一个,也可以每一列对应一个
编码结果
Encode ——> INDEX
预测结果为单个token的index
Encode ——> VECTOR
预测结果为稀疏向量:
1. dropLast为true,向量中非零元个数为0或者1
2. dropLast为false,向量中非零元个数必定为1
Encode ——> ASSEMBLED_VECTOR
预测结果为稀疏向量,是预测选择列中,各列预测为VECTOR时,按照选择顺序ASSEMBLE的结果。
向量维度
Encode ——> Vector
numBuckets: 训练参数
dropLast: 预测参数
handleInvalid: 预测参数
Token index
Encode ——> Vector
1. 正常数据: 唯一的非零元为数据所在的bucket,若 dropLast为true, 最大的bucket的值会被丢掉,预测结果为全零元
2. null:
2.1 handleInvalid为keep: 唯一的非零元为:numBuckets - dropLast(true: 1, false: 0)
2.2 handleInvalid为skip: null
2.3 handleInvalid为error: 报错
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
leftOpen | 是否左开右闭 | 左开右闭为true,左闭右开为false | Boolean | true | ||
numBuckets | quantile个数 | quantile个数,对所有列有效。 | Integer | 2 | ||
numBucketsArray | quantile个数 | quantile个数,每一列对应数组中一个元素。 | Integer[] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 1, 1, 2.0, True],
["c", 1, 2, -3.0, True],
["a", 2, 2, 2.0, False],
["c", 0, 0, 0.0, False]
])
batchSource = BatchOperator.fromDataframe(
df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')
streamSource = StreamOperator.fromDataframe(
df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')
trainOp = QuantileDiscretizerTrainBatchOp()\
.setSelectedCols(['f_double'])\
.setNumBuckets(8)\
.linkFrom(batchSource)
predictBatchOp = QuantileDiscretizerPredictBatchOp()\
.setSelectedCols(['f_double'])
predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp)\
.setSelectedCols(['f_double'])
predictBatchOp.linkFrom(trainOp, batchSource).print()
predictStreamOp.linkFrom(streamSource) .print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp;
import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class QuantileDiscretizerTrainBatchOpTest {
@Test
public void testQuantileDiscretizerTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 1, 1, 2.0, true),
Row.of("c", 1, 2, -3.0, true),
Row.of("a", 2, 2, 2.0, false),
Row.of("c", 0, 0, 0.0, false)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(df,
"f_string string, f_long int, f_int int, f_double double, f_boolean boolean");
StreamOperator <?> streamSource = new MemSourceStreamOp(df,
"f_string string, f_long int, f_int int, f_double double, f_boolean boolean");
BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp()
.setSelectedCols("f_double")
.setNumBuckets(8)
.linkFrom(batchSource);
BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp()
.setSelectedCols("f_double");
predictBatchOp.linkFrom(trainOp, batchSource).print();
StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp)
.setSelectedCols("f_double");
predictStreamOp.linkFrom(streamSource).print();
StreamOperator.execute();
}
}
运行结果
| f_string | f_long | f_int | f_double | f_boolean | | —- | —- | —- | —- | —- |
| a | 1 | 1 | 2 | true |
| c | 1 | 2 | 0 | true |
| a | 2 | 2 | 2 | false |
| c | 0 | 0 | 1 | false |