Java 类名:com.alibaba.alink.operator.stream.timeseries.HoltWintersStreamOp
Python 类名:HoltWintersStreamOp
功能介绍
给定分组,对每一组的数据使用HoltWinters进行时间序列预测。
使用方式
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
算法原理
HoltWinters由Holt和Winters提出的三次指数平滑算法,又称holt-winters,
HoltWinters 详细介绍请见链接 https://en.wikipedia.org/wiki/Exponential_smoothing
holt-winters支持2种季节类型: additive 和 multiplicative
- additive seasonal holt-winters

- multiplicative seasonal holt_winters

其中,
smoothValue(l、b、s)分别表示level,trend,seasonal
- smoothParameter(α、β、γ)分别表示alpha,beta,gamma
- t表示当前时刻,h表示要预测h步
- p表示period或frequency,时间序列的周期
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE] | |
| alpha | alpha | alpha | Double | | [0.0, 1.0] | 0.3 |
| beta | beta | beta | Double | | [0.0, 1.0] | 0.1 |
| doSeasonal | 时间是否具有季节性 | 时间是否具有季节性 | Boolean | | | false |
| doTrend | 时间是否具有趋势性 | 时间是否具有趋势性 | Boolean | | | false |
| frequency | 时序频率 | 时序频率 | Integer | | [1, +inf) | 10 |
| gamma | gamma | gamma | Double | | [0.0, 1.0] | 0.1 |
| levelStart | level初始值 | level初始值 | Double | | | |
| predictNum | 预测条数 | 预测条数 | Integer | | | 1 |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| seasonalStart | seasonal初始值 | seasonal初始值 | double[] | | | |
| seasonalType | 季节类型 | 季节类型 | String | | “MULTIPLICATIVE”, “ADDITIVE” | “ADDITIVE” |
| trendStart | trend初始值 | trend初始值 | Double | | | |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)import time, datetimeimport numpy as npimport pandas as pddata = pd.DataFrame([[1, datetime.datetime.fromtimestamp(1), 10.0],[1, datetime.datetime.fromtimestamp(2), 11.0],[1, datetime.datetime.fromtimestamp(3), 12.0],[1, datetime.datetime.fromtimestamp(4), 13.0],[1, datetime.datetime.fromtimestamp(5), 14.0],[1, datetime.datetime.fromtimestamp(6), 15.0],[1, datetime.datetime.fromtimestamp(7), 16.0],[1, datetime.datetime.fromtimestamp(8), 17.0],[1, datetime.datetime.fromtimestamp(9), 18.0],[1, datetime.datetime.fromtimestamp(10), 19.0]])source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='stream')source.link(OverCountWindowStreamOp().setGroupCols(["id"]).setTimeCol("ts").setPrecedingRows(5).setClause("mtable_agg_preceding(ts, val) as data")).link(HoltWintersStreamOp().setValueCol("data").setPredictionCol("predict").setPredictNum(12)).link(LookupValueInTimeSeriesStreamOp().setTimeCol("ts").setTimeSeriesCol("predict").setOutputCol("out")).print()StreamOperator.execute()
Java 代码
package com.alibaba.alink.operator.stream.timeseries;import org.apache.flink.types.Row;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.feature.OverCountWindowStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.sql.Timestamp;import java.util.Arrays;import java.util.List;public class HoltWintersStreamOpTest {@Testpublic void test() throws Exception {List <Row> mTableData = Arrays.asList(Row.of(1, new Timestamp(1), 10.0),Row.of(1, new Timestamp(2), 11.0),Row.of(1, new Timestamp(3), 12.0),Row.of(1, new Timestamp(4), 13.0),Row.of(1, new Timestamp(5), 14.0),Row.of(1, new Timestamp(6), 15.0),Row.of(1, new Timestamp(7), 16.0),Row.of(1, new Timestamp(8), 17.0),Row.of(1, new Timestamp(9), 18.0),Row.of(1, new Timestamp(10), 19.0));MemSourceStreamOp source = new MemSourceStreamOp(mTableData, new String[] {"id", "ts", "val"});source.link(new OverCountWindowStreamOp().setGroupCols("id").setTimeCol("ts").setPrecedingRows(5).setClause("mtable_agg(ts, val) as data")).link(new HoltWintersStreamOp().setGroupCol("id").setValueCol("data").setPredictionCol("predict").setPredictNum(12)).link(new LookupValueInTimeSeriesStreamOp().setTimeCol("ts").setTimeSeriesCol("predict").setOutputCol("out")).print();StreamOperator.execute();}}
运行结果
| id | ts | val | data | predict | out | | —- | —- | —- | —- | —- | —- |
| 1 | 1970-01-01 08:00:00.001 | 10.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”],”val”:[10.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.002 | 11.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”],”val”:[10.0,11.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”],”val”:[10.3,10.3,10.3,10.3,10.3,10.3,10.3,10.3,10.3,10.3,10.3,10.3]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.003 | 12.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”],”val”:[10.0,11.0,12.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”],”val”:[12.0,12.0,12.0,12.0,12.0,12.0,12.0,12.0,12.0,12.0,12.0,12.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.004 | 13.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”],”val”:[10.0,11.0,12.0,13.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”],”val”:[13.0,13.0,13.0,13.0,13.0,13.0,13.0,13.0,13.0,13.0,13.0,13.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.005 | 14.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”],”val”:[10.0,11.0,12.0,13.0,14.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”],”val”:[14.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0,14.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.006 | 15.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”],”val”:[10.0,11.0,12.0,13.0,14.0,15.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”,”1970-01-01 08:00:00.018”],”val”:[15.0,15.0,15.0,15.0,15.0,15.0,15.0,15.0,15.0,15.0,15.0,15.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.007 | 16.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”],”val”:[11.0,12.0,13.0,14.0,15.0,16.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”,”1970-01-01 08:00:00.018”,”1970-01-01 08:00:00.019”],”val”:[16.0,16.0,16.0,16.0,16.0,16.0,16.0,16.0,16.0,16.0,16.0,16.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.008 | 17.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”],”val”:[12.0,13.0,14.0,15.0,16.0,17.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”,”1970-01-01 08:00:00.018”,”1970-01-01 08:00:00.019”,”1970-01-01 08:00:00.02”],”val”:[17.0,17.0,17.0,17.0,17.0,17.0,17.0,17.0,17.0,17.0,17.0,17.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.009 | 18.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”],”val”:[13.0,14.0,15.0,16.0,17.0,18.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”,”1970-01-01 08:00:00.018”,”1970-01-01 08:00:00.019”,”1970-01-01 08:00:00.02”,”1970-01-01 08:00:00.021”],”val”:[18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.01 | 19.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”],”val”:[14.0,15.0,16.0,17.0,18.0,19.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”,”1970-01-01 08:00:00.018”,”1970-01-01 08:00:00.019”,”1970-01-01 08:00:00.02”,”1970-01-01 08:00:00.021”,”1970-01-01 08:00:00.022”],”val”:[19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0,19.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
