1、两阶段提交方案/XA方案/2PC

2PC(Two-phase commit protocol),中文叫二阶段提交。 二阶段提交是一种强一致性设计,2PC 引入一个事务协调者的角色来协调管理各参与者(也可称之为各本地资源)的提交和回滚,二阶段分别指的是准备(投票)和提交两个阶段。

协调者会给各参与者发送准备命令,你可以把准备命令理解成除了提交事务之外啥事都做完了。
同步等待所有资源的响应之后就进入第二阶段即提交阶段(注意提交阶段不一定是提交事务,也可能是回滚事务)。
假如在第一阶段所有参与者都返回准备成功,那么协调者则向所有参与者发送提交事务命令,然后等待所有事务都提交成功之后,返回事务执行成功。
image.png
image.png
假如在第一阶段有一个参与者返回失败,那么协调者就会向所有参与者发送回滚事务的请求,即分布式事务执行失败。
这里有两种情况。
第一种是第二阶段执行的是回滚事务操作,那么答案是不断重试,直到所有参与者都回滚了,不然那些在第一阶段准备成功的参与者会一直阻塞着。
第二种是第二阶段执行的是提交事务操作,那么答案也是不断重试,因为有可能一些参与者的事务已经提交成功了,这个时候只有一条路,就是头铁往前冲,不断的重试,直到提交成功,到最后真的不行只能人工介入处理

2PC 是一种尽量保证强一致性的分布式事务,因此它是同步阻塞的,而同步阻塞就导致长久的资源锁定问题,总体而言效率低,并且存在单点故障问题,在极端条件下存在数据不一致的风险。
当然具体的实现可以变形,而且 2PC 也有变种,例如 Tree 2PC、Dynamic 2PC。
还有一点不知道你们看出来没,2PC 适用于数据库层面的分布式事务场景,而我们业务需求有时候不仅仅关乎数据库,也有可能是上传一张图片或者发送一条短信。
而且像 Java 中的 JTA 只能解决一个应用下多数据库的分布式事务问题,跨服务了就不能用了。
简单说下 Java 中 JTA,它是基于XA规范实现的事务接口,这里的 XA 你可以简单理解为基于数据库的 XA 规范来实现的 2PC。

SpringBoot2 整合JTA组件,多数据源事务管理

https://www.cnblogs.com/cicada-smile/p/13289306.html

2、TCC方案

TCC的全程是:Try、Confirm、Cancel。

这个其实是用到了补偿的概念,分为了三个阶段:

1)Try阶段:这个阶段说的是对各个服务的资源做检测以及对资源进行锁定或者预留
2)Confirm阶段:这个阶段说的是在各个服务中执行实际的操作
3)Cancel阶段:如果任何一个服务的业务方法执行出错,那么这里就需要进行补偿,就是执行已经执行成功的业务逻辑的回滚操作

举个例子吧,比如说跨银行转账的时候,要涉及到两个银行的分布式事务,如果用TCC方案来实现,思路是这样的:

1)Try阶段:先把两个银行账户中的资金给它冻结住就不让操作了
2)Confirm阶段:执行实际的转账操作,A银行账户的资金扣减,B银行账户的资金增加
3)Cancel阶段:如果任何一个银行的操作执行失败,那么就需要回滚进行补偿,就是比如A银行账户如果已经扣减了,但是B银行账户资金增加失败了,那么就得把A银行账户资金给加回去

这种方案说实话几乎很少用人使用,我们用的也比较少,但是也有使用的场景。因为这个事务回滚实际上是严重依赖于你自己写代码来回滚和补偿了,会造成补偿代码巨大,非常之恶心。

比如说我们,一般来说跟钱相关的,跟钱打交道的,支付、交易相关的场景,我们会用TCC,严格严格保证分布式事务要么全部成功,要么全部自动回滚,严格保证资金的正确性,在资金上出现问题

比较适合的场景:这个就是除非你是真的一致性要求太高,是你系统中核心之核心的场景,比如常见的就是资金类的场景,那你可以用TCC方案了,自己编写大量的业务逻辑,自己判断一个事务中的各个环节是否ok,不ok就执行补偿/回滚代码。

而且最好是你的各个业务执行的时间都比较短。

但是说实话,一般尽量别这么搞,自己手写回滚逻辑,或者是补偿逻辑,实在太恶心了,那个业务代码很难维护。

3、本地消息表

国外的ebay搞出来的这么一套思想

这个大概意思是这样的

1)A系统在自己本地一个事务里操作同时,插入一条数据到消息表
2)接着A系统将这个消息发送到MQ中去
3)B系统接收到消息之后,在一个事务里,往自己本地消息表里插入一条数据,同时执行其他的业务操作,如果这个消息已经被处理过了,那么此时这个事务会回滚,这样保证不会重复处理消息
4)B系统执行成功之后,就会更新自己本地消息表的状态以及A系统消息表的状态
5)如果B系统处理失败了,那么就不会更新消息表状态,那么此时A系统会定时扫描自己的消息表,如果有没处理的消息,会再次发送到MQ中去,让B再次处理
6)这个方案保证了最终一致性,哪怕B事务失败了,但是A会不断重发消息,直到B那边成功为止

这个方案说实话最大的问题就在于严重依赖于数据库的消息表来管理事务啥的???这个会导致如果是高并发场景咋办呢?咋扩展呢?所以一般确实很少用

4、可靠消息最终一致性方案

这个的意思,就是干脆不要用本地的消息表了,直接基于MQ来实现事务。比如阿里的RocketMQ就支持消息事务。

大概的意思就是:
1)A系统先发送一个prepared消息到mq,如果这个prepared消息发送失败那么就直接取消操作别执行了
2)如果这个消息发送成功过了,那么接着执行本地事务,如果成功就告诉mq发送确认消息,如果失败就告诉mq回滚消息
3)如果发送了确认消息,那么此时B系统会接收到确认消息,然后执行本地的事务
4)mq会自动定时轮询所有prepared消息回调你的接口,问你,这个消息是不是本地事务处理失败了,所有没发送确认消息?那是继续重试还是回滚?一般来说这里你就可以查下数据库看之前本地事务是否执行,如果回滚了,那么这里也回滚吧。这个就是避免可能本地事务执行成功了,别确认消息发送失败了。
5)这个方案里,要是系统B的事务失败了咋办?重试咯,自动不断重试直到成功,如果实在是不行,要么就是针对重要的资金类业务进行回滚,比如B系统本地回滚后,想办法通知系统A也回滚;或者是发送报警由人工来手工回滚和补偿

这个还是比较合适的,目前国内互联网公司大都是这么玩儿的,要不你举用RocketMQ支持的,要不你就自己基于类似ActiveMQ?RabbitMQ?自己封装一套类似的逻辑出来,总之思路就是这样子的

5、最大努力通知方案

这个方案的大致意思就是:

1)系统A本地事务执行完之后,发送个消息到MQ
2)这里会有个专门消费MQ的最大努力通知服务,这个服务会消费MQ然后写入数据库中记录下来,或者是放入个内存队列也可以,接着调用系统B的接口
3)要是系统B执行成功就ok了;要是系统B执行失败了,那么最大努力通知服务就定时尝试重新调用系统B,反复N次,最后还是不行就放弃