model.py 搭建神经网络架构

  1. import torch
  2. from torch import nn
  3. # 搭建神经网络
  4. class Tudui(nn.Module):
  5. def __init__(self):
  6. super(Tudui, self).__init__()
  7. self.model = nn.Sequential(
  8. nn.Conv2d(3, 32, 5, 1, 2),
  9. nn.MaxPool2d(2),
  10. nn.Conv2d(32, 32, 5, 1, 2),
  11. nn.MaxPool2d(2),
  12. nn.Conv2d(32, 64, 5, 1, 2),
  13. nn.MaxPool2d(2),
  14. nn.Flatten(),
  15. nn.Linear(64*4*4, 64),
  16. nn.Linear(64, 10)
  17. )
  18. def forward(self, x):
  19. x = self.model(x)
  20. return x
  21. if __name__ == '__main__':
  22. tudui = Tudui()
  23. input = torch.ones((64, 3, 32, 32)) # 构造一个输入数据
  24. output = tudui(input)
  25. print(output.shape) # 测试模型的输出是否符合预期

train.py 模型训练

GPU 训练需要修改三个部分:

  1. 网络模型
  2. 数据(输入、标签)
  3. 损失函数

GPU 训练有两种修改方式:

  1. **.cuda()**
  2. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")**.to(device)** ```python import torch import torchvision from torch.utils.tensorboard import SummaryWriter

from model import *

准备数据集

from torch import nn from torch.utils.data import DataLoader

定义训练的设备

device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

train_data = torchvision.datasets.CIFAR10(root=”../data”, train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10(root=”../data”, train=False, transform=torchvision.transforms.ToTensor(), download=True)

length 长度

train_data_size = len(train_data) test_data_size = len(test_data)

如果train_data_size=10, 训练数据集的长度为:10

print(“训练数据集的长度为:{}”.format(train_data_size)) print(“测试数据集的长度为:{}”.format(test_data_size))

利用 DataLoader 来加载数据集

train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64)

创建网络模型

class Tudui(nn.Module): def init(self): super(Tudui, self).init() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(6444, 64), nn.Linear(64, 10) )

  1. def forward(self, x):
  2. x = self.model(x)
  3. return x

tudui = Tudui() tudui = tudui.to(device) # 1. 将网络模型结构送入 GPU

损失函数

loss_fn = nn.CrossEntropyLoss() loss_fn = loss_fn.to(device) # 3. 将损失函数送入 GPU

优化器

learning_rate = 0.01

1e-2=1 x (10)^(-2) = 1 /100 = 0.01

learning_rate = 1e-2 optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

设置训练网络的一些参数

记录训练的次数

total_train_step = 0

记录测试的次数

total_test_step = 0

训练的轮数

epoch = 10

添加tensorboard

writer = SummaryWriter(“../logs_train”)

for i in range(epoch): print(“———-第 {} 轮训练开始———-“.format(i+1))

  1. # 训练步骤开始
  2. tudui.train()
  3. for data in train_dataloader:
  4. imgs, targets = data
  5. imgs = imgs.to(device)
  6. targets = targets.to(device) # 2. 将数据(输入和标签)送入 GPU
  7. outputs = tudui(imgs)
  8. loss = loss_fn(outputs, targets)
  9. # 优化器优化模型
  10. optimizer.zero_grad()
  11. loss.backward()
  12. optimizer.step()
  13. total_train_step = total_train_step + 1
  14. if total_train_step % 100 == 0:
  15. print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
  16. writer.add_scalar("train_loss", loss.item(), total_train_step)
  17. # 测试步骤开始
  18. tudui.eval()
  19. total_test_loss = 0
  20. total_accuracy = 0
  21. with torch.no_grad():
  22. for data in test_dataloader:
  23. imgs, targets = data
  24. imgs = imgs.to(device)
  25. targets = targets.to(device) # 2. 将数据(输入和标签)送入 GPU
  26. outputs = tudui(imgs)
  27. loss = loss_fn(outputs, targets)
  28. total_test_loss = total_test_loss + loss.item()
  29. accuracy = (outputs.argmax(1) == targets).sum()
  30. total_accuracy = total_accuracy + accuracy
  31. print("整体测试集上的Loss: {}".format(total_test_loss))
  32. print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
  33. writer.add_scalar("test_loss", total_test_loss, total_test_step)
  34. writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
  35. total_test_step = total_test_step + 1
  36. torch.save(tudui, "tudui_{}.pth".format(i))
  37. print("模型已保存")

writer.close()

  1. <a name="WLLbt"></a>
  2. # test.py 模型测试/推理
  3. ```python
  4. import torch
  5. import torchvision
  6. from PIL import Image
  7. from torch import nn
  8. image_path = "../imgs/airplane.png"
  9. image = Image.open(image_path)
  10. print(image)
  11. image = image.convert('RGB')
  12. transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
  13. torchvision.transforms.ToTensor()])
  14. image = transform(image)
  15. print(image.shape)
  16. class Tudui(nn.Module):
  17. def __init__(self):
  18. super(Tudui, self).__init__()
  19. self.model = nn.Sequential(
  20. nn.Conv2d(3, 32, 5, 1, 2),
  21. nn.MaxPool2d(2),
  22. nn.Conv2d(32, 32, 5, 1, 2),
  23. nn.MaxPool2d(2),
  24. nn.Conv2d(32, 64, 5, 1, 2),
  25. nn.MaxPool2d(2),
  26. nn.Flatten(),
  27. nn.Linear(64*4*4, 64),
  28. nn.Linear(64, 10)
  29. )
  30. def forward(self, x):
  31. x = self.model(x)
  32. return x
  33. model = torch.load("tudui_29_gpu.pth", map_location=torch.device('cpu'))
  34. print(model)
  35. image = torch.reshape(image, (1, 3, 32, 32))
  36. # 注意 eval 和 no_grad
  37. model.eval()
  38. with torch.no_grad():
  39. output = model(image)
  40. print(output)
  41. print(output.argmax(1))