1. onnx模型转caffe模型
工具:https://github.com/MTlab/onnx2caffe
以MobileNetV2.onnx为例,执行
python convertCaffe.py ./model/MobileNetV2.onnx ./model/MobileNetV2.prototxt ./model/MobileNetV2.caffemodel
此时会报如下错误:
F0620 09:23:46.248489 198559 cudnn_conv_layer.cpp:53] Check failed: status == CUDNN_STATUS_SUCCESS (4 vs. 0) CUDNN_STATUS_INTERNAL_ERROR
主要是由于MobileNet depthwise层引发的,在caffe使用depthwise层prototxt中需要添加engine: CAFFE,否则会报cudnn错误。在自动转换模型时onnx2caffe中没有添加engine: CAFFE,需要自己将所有group > 1的 Convolution层添加该参数,如果有Deconvolution层的depthwise也要加上。举个例子
layer {name: "362"type: "Convolution"bottom: "361"top: "362"convolution_param {num_output: 32bias_term: falsegroup: 32pad_h: 1pad_w: 1kernel_h: 3kernel_w: 3stride_h: 1stride_w: 1dilation: 1engine: CAFFE}}
然后注释掉convertCaffe.py中70和71行代码
#with open(prototxt_save_path, 'w') as f:#print(net,file=f)
重新执行上面的脚本即可。
ps:以下错误不一定会有
下面是网络层中存在Deconvolution层可能遇到的错误
F0620 09:41:51.688936 205946 base_conv_layer.cpp:123] Check failed: num_output_ % group_ == 0 (1 vs. 0) Number of output should be multiples of group.
主要是num_output输出推导错误,修改
layer {name: "508"type: "Deconvolution"bottom: "507"top: "508"convolution_param {num_output: 64 # 修改为64,onnx2caffe转的为1bias_term: falsegroup: 64pad_h: 0pad_w: 0kernel_h: 2kernel_w: 2stride_h: 2stride_w: 2engine: CAFFE # 添加}}
2. onnx bn和卷积层融合
import onnxfrom onnx import optimizerori_model = onnx.load("resnet18.onnx") # 加载原始模型#all_passes = optimizer.get_available_passes() # 查看所有可以优化的项#passes = ['fuse_add_bias_into_conv', 'fuse_bn_into_conv']passes = ['fuse_bn_into_conv'] # 只将bn融合convoptim_model = optimizer.optimize(ori_model, passes)onnx.save(optim_model, "resnet18-sim.onnx")
ps: PyTorch转onnx模型不同版本可能导致上述代码执行出现问题,推荐以下转模型
# pytorch <= 1.1torch.onnx.export(model, input, "resnet18.onnx", verbose=False, input_names=input_names, output_names=output_names)# pytorch >= 1.2torch.onnx.export(model, input, "resnet18.onnx", verbose=False, input_names=input_names, output_names=output_names, keep_initializers_as_inputs=True)
References
https://blog.csdn.net/m0_37192554/article/details/103363571 https://www.cnblogs.com/wanggangtao/p/11388835.html
