3.6 进程地址空间

每个进程都有一个单独的页表,当xv6在进程之间切换时,也会更改页表。如图2.3所示,一个进程的用户内存从虚拟地址零开始,可以增长到MAXVA (kernel/riscv.h:348),原则上允许一个进程内存寻址空间为256G。

img

当进程向xv6请求更多的用户内存时,xv6首先使用kalloc来分配物理页面。然后,它将PTE添加到进程的页表中,指向新的物理页面。Xv6在这些PTE中设置PTE_WPTE_XPTE_RPTE_UPTE_V标志。大多数进程不使用整个用户地址空间;xv6在未使用的PTE中留空PTE_V

我们在这里看到了一些使用页表的很好的例子。首先,不同进程的页表将用户地址转换为物理内存的不同页面,这样每个进程都拥有私有内存。第二,每个进程看到的自己的内存空间都是以0地址起始的连续虚拟地址,而进程的物理内存可以是非连续的。第三,内核在用户地址空间的顶部映射一个带有蹦床(trampoline)代码的页面,这样在所有地址空间都可以看到一个单独的物理内存页面。

图3.4更详细地显示了xv6中执行态进程的用户内存布局。栈是单独一个页面,显示的是由exec创建后的初始内容。包含命令行参数的字符串以及指向它们的指针数组位于栈的最顶部。再往下是允许程序在main处开始启动的值(即main的地址、argcargv),这些值产生的效果就像刚刚调用了main(argc, argv)一样。

img

为了检测用户栈是否溢出了所分配栈内存,xv6在栈正下方放置了一个无效的保护页(guard page)。如果用户栈溢出并且进程试图使用栈下方的地址,那么由于映射无效(PTE_V为0)硬件将生成一个页面故障异常。当用户栈溢出时,实际的操作系统可能会自动为其分配更多内存。