meta:

  • name: keywords content: 快速入门pandas
  • name: description content: 本节是帮助 Pandas 新手快速上手的简介。烹饪指南里介绍了更多实用案例。本节以下列方式导入 Pandas 与 NumPy:

十分钟入门 Pandas

本节是帮助 Pandas 新手快速上手的简介。烹饪指南里介绍了更多实用案例。

本节以下列方式导入 Pandas 与 NumPy:

  1. In [1]: import numpy as np
  2. In [2]: import pandas as pd

生成对象

详见数据结构简介文档。

用值列表生成 Series 时,Pandas 默认自动生成整数索引:

  1. In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])
  2. In [4]: s
  3. Out[4]:
  4. 0 1.0
  5. 1 3.0
  6. 2 5.0
  7. 3 NaN
  8. 4 6.0
  9. 5 8.0
  10. dtype: float64

用含日期时间索引与标签的 NumPy 数组生成 DataFrame

  1. In [5]: dates = pd.date_range('20130101', periods=6)
  2. In [6]: dates
  3. Out[6]:
  4. DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
  5. '2013-01-05', '2013-01-06'],
  6. dtype='datetime64[ns]', freq='D')
  7. In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
  8. In [8]: df
  9. Out[8]:
  10. A B C D
  11. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  12. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  13. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  14. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  15. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  16. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

用 Series 字典对象生成 DataFrame:

  1. In [9]: df2 = pd.DataFrame({'A': 1.,
  2. ...: 'B': pd.Timestamp('20130102'),
  3. ...: 'C': pd.Series(1, index=list(range(4)), dtype='float32'),
  4. ...: 'D': np.array([3] * 4, dtype='int32'),
  5. ...: 'E': pd.Categorical(["test", "train", "test", "train"]),
  6. ...: 'F': 'foo'})
  7. ...:
  8. In [10]: df2
  9. Out[10]:
  10. A B C D E F
  11. 0 1.0 2013-01-02 1.0 3 test foo
  12. 1 1.0 2013-01-02 1.0 3 train foo
  13. 2 1.0 2013-01-02 1.0 3 test foo
  14. 3 1.0 2013-01-02 1.0 3 train foo

DataFrame 的列有不同数据类型

  1. In [11]: df2.dtypes
  2. Out[11]:
  3. A float64
  4. B datetime64[ns]
  5. C float32
  6. D int32
  7. E category
  8. F object
  9. dtype: object

IPython支持 tab 键自动补全列名与公共属性。下面是部分可自动补全的属性:

  1. In [12]: df2.<TAB> # noqa: E225, E999
  2. df2.A df2.bool
  3. df2.abs df2.boxplot
  4. df2.add df2.C
  5. df2.add_prefix df2.clip
  6. df2.add_suffix df2.clip_lower
  7. df2.align df2.clip_upper
  8. df2.all df2.columns
  9. df2.any df2.combine
  10. df2.append df2.combine_first
  11. df2.apply df2.compound
  12. df2.applymap df2.consolidate
  13. df2.D

列 A、B、C、D 和 E 都可以自动补全;为简洁起见,此处只显示了部分属性。

查看数据

详见基础用法文档。

下列代码说明如何查看 DataFrame 头部和尾部数据:

  1. In [13]: df.head()
  2. Out[13]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  8. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  9. In [14]: df.tail(3)
  10. Out[14]:
  11. A B C D
  12. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  13. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  14. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示索引与列名:

  1. In [15]: df.index
  2. Out[15]:
  3. DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
  4. '2013-01-05', '2013-01-06'],
  5. dtype='datetime64[ns]', freq='D')
  6. In [16]: df.columns
  7. Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() 输出底层数据的 NumPy 对象。注意,DataFrame 的列由多种数据类型组成时,该操作耗费系统资源较大,这也是 Pandas 和 NumPy 的本质区别:NumPy 数组只有一种数据类型,DataFrame 每列的数据类型各不相同。调用 DataFrame.to_numpy() 时,Pandas 查找支持 DataFrame 里所有数据类型的 NumPy 数据类型。还有一种数据类型是 object,可以把 DataFrame 列里的值强制转换为 Python 对象。

下面的 df 这个 DataFrame 里的值都是浮点数,DataFrame.to_numpy() 的操作会很快,而且不复制数据。

  1. In [17]: df.to_numpy()
  2. Out[17]:
  3. array([[ 0.4691, -0.2829, -1.5091, -1.1356],
  4. [ 1.2121, -0.1732, 0.1192, -1.0442],
  5. [-0.8618, -2.1046, -0.4949, 1.0718],
  6. [ 0.7216, -0.7068, -1.0396, 0.2719],
  7. [-0.425 , 0.567 , 0.2762, -1.0874],
  8. [-0.6737, 0.1136, -1.4784, 0.525 ]])

df2 这个 DataFrame 包含了多种类型,DataFrame.to_numpy() 操作就会耗费较多资源。

  1. In [18]: df2.to_numpy()
  2. Out[18]:
  3. array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
  4. [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
  5. [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
  6. [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)

::: tip 提醒

DataFrame.to_numpy() 的输出不包含行索引和列标签。

:::

describe() 可以快速查看数据的统计摘要:

  1. In [19]: df.describe()
  2. Out[19]:
  3. A B C D
  4. count 6.000000 6.000000 6.000000 6.000000
  5. mean 0.073711 -0.431125 -0.687758 -0.233103
  6. std 0.843157 0.922818 0.779887 0.973118
  7. min -0.861849 -2.104569 -1.509059 -1.135632
  8. 25% -0.611510 -0.600794 -1.368714 -1.076610
  9. 50% 0.022070 -0.228039 -0.767252 -0.386188
  10. 75% 0.658444 0.041933 -0.034326 0.461706
  11. max 1.212112 0.567020 0.276232 1.071804

转置数据:

  1. In [20]: df.T
  2. Out[20]:
  3. 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
  4. A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
  5. B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
  6. C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
  7. D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按轴排序:

  1. In [21]: df.sort_index(axis=1, ascending=False)
  2. Out[21]:
  3. D C B A
  4. 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
  5. 2013-01-02 -1.044236 0.119209 -0.173215 1.212112
  6. 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
  7. 2013-01-04 0.271860 -1.039575 -0.706771 0.721555
  8. 2013-01-05 -1.087401 0.276232 0.567020 -0.424972
  9. 2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序:

  1. In [22]: df.sort_values(by='B')
  2. Out[22]:
  3. A B C D
  4. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  5. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  6. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  7. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  8. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
  9. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401

选择

::: tip 提醒

选择、设置标准 Python / Numpy 的表达式已经非常直观,交互也很方便,但对于生产代码,我们还是推荐优化过的 Pandas 数据访问方法:.at.iat.loc.iloc

:::

详见索引与选择数据多层索引与高级索引文档。

获取数据

选择单列,产生 Series,与 df.A 等效:

  1. In [23]: df['A']
  2. Out[23]:
  3. 2013-01-01 0.469112
  4. 2013-01-02 1.212112
  5. 2013-01-03 -0.861849
  6. 2013-01-04 0.721555
  7. 2013-01-05 -0.424972
  8. 2013-01-06 -0.673690
  9. Freq: D, Name: A, dtype: float64

用 [ ] 切片行:

  1. In [24]: df[0:3]
  2. Out[24]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. In [25]: df['20130102':'20130104']
  8. Out[25]:
  9. A B C D
  10. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  11. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  12. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

按标签选择

详见按标签选择

用标签提取一行数据:

  1. In [26]: df.loc[dates[0]]
  2. Out[26]:
  3. A 0.469112
  4. B -0.282863
  5. C -1.509059
  6. D -1.135632
  7. Name: 2013-01-01 00:00:00, dtype: float64

用标签选择多列数据:

  1. In [27]: df.loc[:, ['A', 'B']]
  2. Out[27]:
  3. A B
  4. 2013-01-01 0.469112 -0.282863
  5. 2013-01-02 1.212112 -0.173215
  6. 2013-01-03 -0.861849 -2.104569
  7. 2013-01-04 0.721555 -0.706771
  8. 2013-01-05 -0.424972 0.567020
  9. 2013-01-06 -0.673690 0.113648

用标签切片,包含行与列结束点:

  1. In [28]: df.loc['20130102':'20130104', ['A', 'B']]
  2. Out[28]:
  3. A B
  4. 2013-01-02 1.212112 -0.173215
  5. 2013-01-03 -0.861849 -2.104569
  6. 2013-01-04 0.721555 -0.706771

返回对象降维:

  1. In [29]: df.loc['20130102', ['A', 'B']]
  2. Out[29]:
  3. A 1.212112
  4. B -0.173215
  5. Name: 2013-01-02 00:00:00, dtype: float64

提取标量值:

  1. In [30]: df.loc[dates[0], 'A']
  2. Out[30]: 0.46911229990718628

快速访问标量,与上述方法等效:

  1. In [31]: df.at[dates[0], 'A']
  2. Out[31]: 0.46911229990718628

按位置选择

详见按位置选择

用整数位置选择:

  1. In [32]: df.iloc[3]
  2. Out[32]:
  3. A 0.721555
  4. B -0.706771
  5. C -1.039575
  6. D 0.271860
  7. Name: 2013-01-04 00:00:00, dtype: float64

类似 NumPy / Python,用整数切片:

  1. In [33]: df.iloc[3:5, 0:2]
  2. Out[33]:
  3. A B
  4. 2013-01-04 0.721555 -0.706771
  5. 2013-01-05 -0.424972 0.567020

类似 NumPy / Python,用整数列表按位置切片:

  1. In [34]: df.iloc[[1, 2, 4], [0, 2]]
  2. Out[34]:
  3. A C
  4. 2013-01-02 1.212112 0.119209
  5. 2013-01-03 -0.861849 -0.494929
  6. 2013-01-05 -0.424972 0.276232

显式整行切片:

  1. In [35]: df.iloc[1:3, :]
  2. Out[35]:
  3. A B C D
  4. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  5. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

显式整列切片:

  1. In [36]: df.iloc[:, 1:3]
  2. Out[36]:
  3. B C
  4. 2013-01-01 -0.282863 -1.509059
  5. 2013-01-02 -0.173215 0.119209
  6. 2013-01-03 -2.104569 -0.494929
  7. 2013-01-04 -0.706771 -1.039575
  8. 2013-01-05 0.567020 0.276232
  9. 2013-01-06 0.113648 -1.478427

显式提取值:

  1. In [37]: df.iloc[1, 1]
  2. Out[37]: -0.17321464905330858

快速访问标量,与上述方法等效:

  1. In [38]: df.iat[1, 1]
  2. Out[38]: -0.17321464905330858

布尔索引

用单列的值选择数据:

  1. In [39]: df[df.A > 0]
  2. Out[39]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

选择 DataFrame 里满足条件的值:

  1. In [40]: df[df > 0]
  2. Out[40]:
  3. A B C D
  4. 2013-01-01 0.469112 NaN NaN NaN
  5. 2013-01-02 1.212112 NaN 0.119209 NaN
  6. 2013-01-03 NaN NaN NaN 1.071804
  7. 2013-01-04 0.721555 NaN NaN 0.271860
  8. 2013-01-05 NaN 0.567020 0.276232 NaN
  9. 2013-01-06 NaN 0.113648 NaN 0.524988

isin() 筛选:

  1. In [41]: df2 = df.copy()
  2. In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
  3. In [43]: df2
  4. Out[43]:
  5. A B C D E
  6. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
  7. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
  9. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
  10. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
  11. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
  12. In [44]: df2[df2['E'].isin(['two', 'four'])]
  13. Out[44]:
  14. A B C D E
  15. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
  16. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

赋值

用索引自动对齐新增列的数据:

  1. In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))
  2. In [46]: s1
  3. Out[46]:
  4. 2013-01-02 1
  5. 2013-01-03 2
  6. 2013-01-04 3
  7. 2013-01-05 4
  8. 2013-01-06 5
  9. 2013-01-07 6
  10. Freq: D, dtype: int64
  11. In [47]: df['F'] = s1

按标签赋值:

  1. In [48]: df.at[dates[0], 'A'] = 0

按位置赋值:

  1. In [49]: df.iat[0, 1] = 0

按 NumPy 数组赋值:

  1. In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

上述赋值结果:

  1. In [51]: df
  2. Out[51]:
  3. A B C D F
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
  5. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
  7. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
  8. 2013-01-05 -0.424972 0.567020 0.276232 5 4.0
  9. 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

where 条件赋值:

  1. In [52]: df2 = df.copy()
  2. In [53]: df2[df2 > 0] = -df2
  3. In [54]: df2
  4. Out[54]:
  5. A B C D F
  6. 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
  7. 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
  9. 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
  10. 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
  11. 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失值

Pandas 主要用 np.nan 表示缺失数据。 计算时,默认不包含空值。详见缺失数据

重建索引(reindex)可以更改、添加、删除指定轴的索引,并返回数据副本,即不更改原数据。

  1. In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
  2. In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1
  3. In [57]: df1
  4. Out[57]:
  5. A B C D F E
  6. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
  7. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
  9. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

删除所有含缺失值的行:

  1. In [58]: df1.dropna(how='any')
  2. Out[58]:
  3. A B C D F E
  4. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

填充缺失值:

  1. In [59]: df1.fillna(value=5)
  2. Out[59]:
  3. A B C D F E
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
  5. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
  7. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

提取 nan 值的布尔掩码:

  1. In [60]: pd.isna(df1)
  2. Out[60]:
  3. A B C D F E
  4. 2013-01-01 False False False False True False
  5. 2013-01-02 False False False False False False
  6. 2013-01-03 False False False False False True
  7. 2013-01-04 False False False False False True

运算

详见二进制操作

统计

一般情况下,运算时排除缺失值。

描述性统计:

  1. In [61]: df.mean()
  2. Out[61]:
  3. A -0.004474
  4. B -0.383981
  5. C -0.687758
  6. D 5.000000
  7. F 3.000000
  8. dtype: float64

在另一个轴(即,行)上执行同样的操作:

  1. In [62]: df.mean(1)
  2. Out[62]:
  3. 2013-01-01 0.872735
  4. 2013-01-02 1.431621
  5. 2013-01-03 0.707731
  6. 2013-01-04 1.395042
  7. 2013-01-05 1.883656
  8. 2013-01-06 1.592306
  9. Freq: D, dtype: float64

不同维度对象运算时,要先对齐。 此外,Pandas 自动沿指定维度广播。

  1. In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
  2. In [64]: s
  3. Out[64]:
  4. 2013-01-01 NaN
  5. 2013-01-02 NaN
  6. 2013-01-03 1.0
  7. 2013-01-04 3.0
  8. 2013-01-05 5.0
  9. 2013-01-06 NaN
  10. Freq: D, dtype: float64
  11. In [65]: df.sub(s, axis='index')
  12. Out[65]:
  13. A B C D F
  14. 2013-01-01 NaN NaN NaN NaN NaN
  15. 2013-01-02 NaN NaN NaN NaN NaN
  16. 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
  17. 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
  18. 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
  19. 2013-01-06 NaN NaN NaN NaN NaN

Apply 函数

Apply 函数处理数据:

  1. In [66]: df.apply(np.cumsum)
  2. Out[66]:
  3. A B C D F
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
  5. 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
  6. 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
  7. 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
  8. 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
  9. 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0
  10. In [67]: df.apply(lambda x: x.max() - x.min())
  11. Out[67]:
  12. A 2.073961
  13. B 2.671590
  14. C 1.785291
  15. D 0.000000
  16. F 4.000000
  17. dtype: float64

直方图

详见直方图与离散化

  1. In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
  2. In [69]: s
  3. Out[69]:
  4. 0 4
  5. 1 2
  6. 2 1
  7. 3 2
  8. 4 6
  9. 5 4
  10. 6 4
  11. 7 6
  12. 8 4
  13. 9 4
  14. dtype: int64
  15. In [70]: s.value_counts()
  16. Out[70]:
  17. 4 5
  18. 6 2
  19. 2 2
  20. 1 1
  21. dtype: int64

字符串方法

Series 的 str 属性包含一组字符串处理功能,如下列代码所示。注意,str 的模式匹配默认使用正则表达式。详见矢量字符串方法

  1. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
  2. In [72]: s.str.lower()
  3. Out[72]:
  4. 0 a
  5. 1 b
  6. 2 c
  7. 3 aaba
  8. 4 baca
  9. 5 NaN
  10. 6 caba
  11. 7 dog
  12. 8 cat
  13. dtype: object

合并(Merge)

结合(Concat)

Pandas 提供了多种将 Series、DataFrame 对象组合在一起的功能,用索引与关联代数功能的多种设置逻辑可执行连接(join)与合并(merge)操作。

详见合并

concat() 用于连接 Pandas 对象:

  1. In [73]: df = pd.DataFrame(np.random.randn(10, 4))
  2. In [74]: df
  3. Out[74]:
  4. 0 1 2 3
  5. 0 -0.548702 1.467327 -1.015962 -0.483075
  6. 1 1.637550 -1.217659 -0.291519 -1.745505
  7. 2 -0.263952 0.991460 -0.919069 0.266046
  8. 3 -0.709661 1.669052 1.037882 -1.705775
  9. 4 -0.919854 -0.042379 1.247642 -0.009920
  10. 5 0.290213 0.495767 0.362949 1.548106
  11. 6 -1.131345 -0.089329 0.337863 -0.945867
  12. 7 -0.932132 1.956030 0.017587 -0.016692
  13. 8 -0.575247 0.254161 -1.143704 0.215897
  14. 9 1.193555 -0.077118 -0.408530 -0.862495
  15. # 分解为多组
  16. In [75]: pieces = [df[:3], df[3:7], df[7:]]
  17. In [76]: pd.concat(pieces)
  18. Out[76]:
  19. 0 1 2 3
  20. 0 -0.548702 1.467327 -1.015962 -0.483075
  21. 1 1.637550 -1.217659 -0.291519 -1.745505
  22. 2 -0.263952 0.991460 -0.919069 0.266046
  23. 3 -0.709661 1.669052 1.037882 -1.705775
  24. 4 -0.919854 -0.042379 1.247642 -0.009920
  25. 5 0.290213 0.495767 0.362949 1.548106
  26. 6 -1.131345 -0.089329 0.337863 -0.945867
  27. 7 -0.932132 1.956030 0.017587 -0.016692
  28. 8 -0.575247 0.254161 -1.143704 0.215897
  29. 9 1.193555 -0.077118 -0.408530 -0.862495

连接(join)

SQL 风格的合并。 详见数据库风格连接

  1. In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
  2. In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
  3. In [79]: left
  4. Out[79]:
  5. key lval
  6. 0 foo 1
  7. 1 foo 2
  8. In [80]: right
  9. Out[80]:
  10. key rval
  11. 0 foo 4
  12. 1 foo 5
  13. In [81]: pd.merge(left, right, on='key')
  14. Out[81]:
  15. key lval rval
  16. 0 foo 1 4
  17. 1 foo 1 5
  18. 2 foo 2 4
  19. 3 foo 2 5

这里还有一个例子:

  1. In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
  2. In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
  3. In [84]: left
  4. Out[84]:
  5. key lval
  6. 0 foo 1
  7. 1 bar 2
  8. In [85]: right
  9. Out[85]:
  10. key rval
  11. 0 foo 4
  12. 1 bar 5
  13. In [86]: pd.merge(left, right, on='key')
  14. Out[86]:
  15. key lval rval
  16. 0 foo 1 4
  17. 1 bar 2 5

追加(Append)

为 DataFrame 追加行。详见追加文档。

  1. In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])
  2. In [88]: df
  3. Out[88]:
  4. A B C D
  5. 0 1.346061 1.511763 1.627081 -0.990582
  6. 1 -0.441652 1.211526 0.268520 0.024580
  7. 2 -1.577585 0.396823 -0.105381 -0.532532
  8. 3 1.453749 1.208843 -0.080952 -0.264610
  9. 4 -0.727965 -0.589346 0.339969 -0.693205
  10. 5 -0.339355 0.593616 0.884345 1.591431
  11. 6 0.141809 0.220390 0.435589 0.192451
  12. 7 -0.096701 0.803351 1.715071 -0.708758
  13. In [89]: s = df.iloc[3]
  14. In [90]: df.append(s, ignore_index=True)
  15. Out[90]:
  16. A B C D
  17. 0 1.346061 1.511763 1.627081 -0.990582
  18. 1 -0.441652 1.211526 0.268520 0.024580
  19. 2 -1.577585 0.396823 -0.105381 -0.532532
  20. 3 1.453749 1.208843 -0.080952 -0.264610
  21. 4 -0.727965 -0.589346 0.339969 -0.693205
  22. 5 -0.339355 0.593616 0.884345 1.591431
  23. 6 0.141809 0.220390 0.435589 0.192451
  24. 7 -0.096701 0.803351 1.715071 -0.708758
  25. 8 1.453749 1.208843 -0.080952 -0.264610

分组(Grouping)

“group by” 指的是涵盖下列一项或多项步骤的处理流程:

  • 分割:按条件把数据分割成多组;
  • 应用:为每组单独应用函数;
  • 组合:将处理结果组合成一个数据结构。

详见分组

  1. In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
  2. ....: 'foo', 'bar', 'foo', 'foo'],
  3. ....: 'B': ['one', 'one', 'two', 'three',
  4. ....: 'two', 'two', 'one', 'three'],
  5. ....: 'C': np.random.randn(8),
  6. ....: 'D': np.random.randn(8)})
  7. ....:
  8. In [92]: df
  9. Out[92]:
  10. A B C D
  11. 0 foo one -1.202872 -0.055224
  12. 1 bar one -1.814470 2.395985
  13. 2 foo two 1.018601 1.552825
  14. 3 bar three -0.595447 0.166599
  15. 4 foo two 1.395433 0.047609
  16. 5 bar two -0.392670 -0.136473
  17. 6 foo one 0.007207 -0.561757
  18. 7 foo three 1.928123 -1.623033

先分组,再用 sum()函数计算每组的汇总数据:

  1. In [93]: df.groupby('A').sum()
  2. Out[93]:
  3. C D
  4. A
  5. bar -2.802588 2.42611
  6. foo 3.146492 -0.63958

多列分组后,生成多层索引,也可以应用 sum 函数:

  1. In [94]: df.groupby(['A', 'B']).sum()
  2. Out[94]:
  3. C D
  4. A B
  5. bar one -1.814470 2.395985
  6. three -0.595447 0.166599
  7. two -0.392670 -0.136473
  8. foo one -1.195665 -0.616981
  9. three 1.928123 -1.623033
  10. two 2.414034 1.600434

重塑(Reshaping)

详见多层索引重塑

堆叠(Stack)

  1. In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
  2. ....: 'foo', 'foo', 'qux', 'qux'],
  3. ....: ['one', 'two', 'one', 'two',
  4. ....: 'one', 'two', 'one', 'two']]))
  5. ....:
  6. In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
  7. In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
  8. In [98]: df2 = df[:4]
  9. In [99]: df2
  10. Out[99]:
  11. A B
  12. first second
  13. bar one 0.029399 -0.542108
  14. two 0.282696 -0.087302
  15. baz one -1.575170 1.771208
  16. two 0.816482 1.100230

stack()方法把 DataFrame 列压缩至一层:

  1. In [100]: stacked = df2.stack()
  2. In [101]: stacked
  3. Out[101]:
  4. first second
  5. B -0.542108
  6. two A 0.282696
  7. B -0.087302
  8. baz one A -1.575170
  9. B 1.771208
  10. two A 0.816482
  11. B 1.100230
  12. dtype: float64

压缩后的 DataFrame 或 Series 具有多层索引, stack() 的逆操作是 unstack(),默认为拆叠最后一层:

  1. In [102]: stacked.unstack()
  2. Out[102]:
  3. A B
  4. first second
  5. bar one 0.029399 -0.542108
  6. two 0.282696 -0.087302
  7. baz one -1.575170 1.771208
  8. two 0.816482 1.100230
  9. In [103]: stacked.unstack(1)
  10. Out[103]:
  11. second one two
  12. first
  13. bar A 0.029399 0.282696
  14. B -0.542108 -0.087302
  15. baz A -1.575170 0.816482
  16. B 1.771208 1.100230
  17. In [104]: stacked.unstack(0)
  18. Out[104]:
  19. first bar baz
  20. second
  21. one A 0.029399 -1.575170
  22. B -0.542108 1.771208
  23. two A 0.282696 0.816482
  24. B -0.087302 1.100230

数据透视表(Pivot Tables)

详见数据透视表

  1. In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
  2. .....: 'B': ['A', 'B', 'C'] * 4,
  3. .....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
  4. .....: 'D': np.random.randn(12),
  5. .....: 'E': np.random.randn(12)})
  6. .....:
  7. In [106]: df
  8. Out[106]:
  9. A B C D E
  10. 0 one A foo 1.418757 -0.179666
  11. 1 one B foo -1.879024 1.291836
  12. 2 two C foo 0.536826 -0.009614
  13. 3 three A bar 1.006160 0.392149
  14. 4 one B bar -0.029716 0.264599
  15. 5 one C bar -1.146178 -0.057409
  16. 6 two A foo 0.100900 -1.425638
  17. 7 three B foo -1.035018 1.024098
  18. 8 one C foo 0.314665 -0.106062
  19. 9 one A bar -0.773723 1.824375
  20. 10 two B bar -1.170653 0.595974
  21. 11 three C bar 0.648740 1.167115

用上述数据生成数据透视表非常简单:

  1. In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
  2. Out[107]:
  3. C bar foo
  4. A B
  5. one A -0.773723 1.418757
  6. B -0.029716 -1.879024
  7. C -1.146178 0.314665
  8. three A 1.006160 NaN
  9. B NaN -1.035018
  10. C 0.648740 NaN
  11. two A NaN 0.100900
  12. B -1.170653 NaN
  13. C NaN 0.536826

时间序列(TimeSeries)

Pandas 为频率转换时重采样提供了虽然简单易用,但强大高效的功能,如,将秒级的数据转换为 5 分钟为频率的数据。这种操作常见于财务应用程序,但又不仅限于此。详见时间序列

  1. In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
  2. In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
  3. In [110]: ts.resample('5Min').sum()
  4. Out[110]:
  5. 2012-01-01 25083
  6. Freq: 5T, dtype: int64

时区表示:

  1. In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
  2. In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
  3. In [113]: ts
  4. Out[113]:
  5. 2012-03-06 0.464000
  6. 2012-03-07 0.227371
  7. 2012-03-08 -0.496922
  8. 2012-03-09 0.306389
  9. 2012-03-10 -2.290613
  10. Freq: D, dtype: float64
  11. In [114]: ts_utc = ts.tz_localize('UTC')
  12. In [115]: ts_utc
  13. Out[115]:
  14. 2012-03-06 00:00:00+00:00 0.464000
  15. 2012-03-07 00:00:00+00:00 0.227371
  16. 2012-03-08 00:00:00+00:00 -0.496922
  17. 2012-03-09 00:00:00+00:00 0.306389
  18. 2012-03-10 00:00:00+00:00 -2.290613
  19. Freq: D, dtype: float64

转换成其它时区:

  1. In [116]: ts_utc.tz_convert('US/Eastern')
  2. Out[116]:
  3. 2012-03-05 19:00:00-05:00 0.464000
  4. 2012-03-06 19:00:00-05:00 0.227371
  5. 2012-03-07 19:00:00-05:00 -0.496922
  6. 2012-03-08 19:00:00-05:00 0.306389
  7. 2012-03-09 19:00:00-05:00 -2.290613
  8. Freq: D, dtype: float64

转换时间段:

  1. In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
  2. In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
  3. In [119]: ts
  4. Out[119]:
  5. 2012-01-31 -1.134623
  6. 2012-02-29 -1.561819
  7. 2012-03-31 -0.260838
  8. 2012-04-30 0.281957
  9. 2012-05-31 1.523962
  10. Freq: M, dtype: float64
  11. In [120]: ps = ts.to_period()
  12. In [121]: ps
  13. Out[121]:
  14. 2012-01 -1.134623
  15. 2012-02 -1.561819
  16. 2012-03 -0.260838
  17. 2012-04 0.281957
  18. 2012-05 1.523962
  19. Freq: M, dtype: float64
  20. In [122]: ps.to_timestamp()
  21. Out[122]:
  22. 2012-01-01 -1.134623
  23. 2012-02-01 -1.561819
  24. 2012-03-01 -0.260838
  25. 2012-04-01 0.281957
  26. 2012-05-01 1.523962
  27. Freq: MS, dtype: float64

Pandas 函数可以很方便地转换时间段与时间戳。下例把以 11 月为结束年份的季度频率转换为下一季度月末上午 9 点:

  1. In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
  2. In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
  3. In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
  4. In [126]: ts.head()
  5. Out[126]:
  6. 1990-03-01 09:00 -0.902937
  7. 1990-06-01 09:00 0.068159
  8. 1990-09-01 09:00 -0.057873
  9. 1990-12-01 09:00 -0.368204
  10. 1991-03-01 09:00 -1.144073
  11. Freq: H, dtype: float64

类别型(Categoricals)

Pandas 的 DataFrame 里可以包含类别数据。完整文档详见类别简介API 文档

  1. In [127]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
  2. .....: "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
  3. .....:

grade 的原生数据转换为类别型数据:

  1. In [128]: df["grade"] = df["raw_grade"].astype("category")
  2. In [129]: df["grade"]
  3. Out[129]:
  4. 0 a
  5. 1 b
  6. 2 b
  7. 3 a
  8. 4 a
  9. 5 e
  10. Name: grade, dtype: category
  11. Categories (3, object): [a, b, e]

用有含义的名字重命名不同类型,调用 Series.cat.categories

  1. In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

重新排序各类别,并添加缺失类,Series.cat 的方法默认返回新 Series

  1. In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
  2. .....: "good", "very good"])
  3. .....:
  4. In [132]: df["grade"]
  5. Out[132]:
  6. 0 very good
  7. 1 good
  8. 2 good
  9. 3 very good
  10. 4 very good
  11. 5 very bad
  12. Name: grade, dtype: category
  13. Categories (5, object): [very bad, bad, medium, good, very good]

注意,这里是按生成类别时的顺序排序,不是按词汇排序:

  1. In [133]: df.sort_values(by="grade")
  2. Out[133]:
  3. id raw_grade grade
  4. 5 6 e very bad
  5. 1 2 b good
  6. 2 3 b good
  7. 0 1 a very good
  8. 3 4 a very good
  9. 4 5 a very good

按类列分组(groupby)时,即便某类别为空,也会显示:

  1. In [134]: df.groupby("grade").size()
  2. Out[134]:
  3. grade
  4. very bad 1
  5. bad 0
  6. medium 0
  7. good 2
  8. very good 3
  9. dtype: int64

可视化

详见可视化文档。

  1. In [135]: ts = pd.Series(np.random.randn(1000),
  2. .....: index=pd.date_range('1/1/2000', periods=1000))
  3. .....:
  4. In [136]: ts = ts.cumsum()
  5. In [137]: ts.plot()
  6. Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2b5771ac88>

可视化

DataFrame 的 plot() 方法可以快速绘制所有带标签的列:

  1. In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
  2. .....: columns=['A', 'B', 'C', 'D'])
  3. .....:
  4. In [139]: df = df.cumsum()
  5. In [140]: plt.figure()
  6. Out[140]: <Figure size 640x480 with 0 Axes>
  7. In [141]: df.plot()
  8. Out[141]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2b53a2d7f0>
  9. In [142]: plt.legend(loc='best')
  10. Out[142]: <matplotlib.legend.Legend at 0x7f2b539728d0>

可视化2

数据输入 / 输出

CSV

写入 CSV 文件

  1. In [143]: df.to_csv('foo.csv')

读取 CSV 文件数据:

  1. In [144]: pd.read_csv('foo.csv')
  2. Out[144]:
  3. Unnamed: 0 A B C D
  4. 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. .. ... ... ... ... ...
  12. 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 5 columns]

HDF5

详见 HDFStores 文档。

写入 HDF5 Store:

  1. In [145]: df.to_hdf('foo.h5', 'df')

读取 HDF5 Store:

  1. In [146]: pd.read_hdf('foo.h5', 'df')
  2. Out[146]:
  3. A B C D
  4. 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. ... ... ... ... ...
  12. 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 4 columns]

Excel

详见 Excel 文档。

写入 Excel 文件:

  1. In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

读取 Excel 文件:

  1. In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
  2. Out[148]:
  3. Unnamed: 0 A B C D
  4. 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. .. ... ... ... ... ...
  12. 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 5 columns]

各种坑(Gotchas)

执行某些操作,将触发异常,如:

  1. >>> if pd.Series([False, True, False]):
  2. ... print("I was true")
  3. Traceback
  4. ...
  5. ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

参阅比较操作文档,查看错误提示与解决方案。

详见各种坑文档。