题目
给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。
图中的每个节点都包含它的值 val
(int
) 和其邻居的列表(list[Node]
)。
class Node {
public int val;
public List<Node> neighbors;
}
测试用例格式:
简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1
),第二个节点值为 2(val = 2
),以此类推。该图在测试用例中使用邻接列表表示。
邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。
给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。
示例 1:
输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
示例 2:
输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。
示例 3:
输入:adjList = []
输出:[]
解释:这个图是空的,它不含任何节点。
示例 4:
输入:adjList = [[2],[1]]
输出:[[2],[1]]
提示:**
- 节点数不超过 100 。
- 每个节点值
Node.val
都是唯一的,1 <= Node.val <= 100
。 - 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
- 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
- 图是连通图,你可以从给定节点访问到所有节点。
方案(DFS)
"""
# Definition for a Node.
class Node:
def __init__(self, val = 0, neighbors = []):
self.val = val
self.neighbors = neighbors
"""
class Solution:
def cloneGraph(self, node: 'Node') -> 'Node':
if not node:
return None
root_val = node.val # 最后取出待返回的节点使用
stack = [node]
visited = {} # key: node.val, value: node
while stack:
_node = stack.pop()
if _node.val not in visited:
new_node = Node(_node.val)
visited[_node.val] = new_node
if not _node.neighbors:
continue
for n in _node.neighbors:
if n.val not in visited:
stack.append(n)
visited[n.val] = Node(n.val)
visited[_node.val].neighbors.append(visited[n.val])
return visited[root_val]
- 使用一个栈进行递归,一个字典用来存储已生成的新节点
- 时间复杂度
- 空间复杂度
leetcode 相同方案:
"""
# Definition for a Node.
class Node:
def __init__(self, val = 0, neighbors = []):
self.val = val
self.neighbors = neighbors
"""
class Solution:
def cloneGraph(self, node: 'Node') -> 'Node':
visited = {}
def dfs(node):
if not node: return
if node in visited:
return visited[node]
clone = Node(node.val, [])
visited[node] = clone
for ngb in node.neighbors:
clone.neighbors.append(dfs(ngb))
return clone
return dfs(node)
原文
https://leetcode-cn.com/explore/learn/card/queue-stack/219/stack-and-dfs/884/