NOTE:此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-7/recipe-09 中找到,其中有一个Fortran示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。
我们来讨论如何构造和组织Fortran项目,原因有二:
- 现在,仍然有很多Fortran项目,特别是在数字软件中(有关通用Fortran软件项目的更全面列表,请参见http://fortranwiki.org/fortran/show/Libraries )。
 - 对于不使用CMake的项目,Fortran 90(以及更高版本)可能更难构建,因为Fortran模块强制执行编译顺序。换句话说,对于手工编写的Makefile,通常需要为Fortran模块文件编写依赖扫描程序。
 
正如我们在本示例中所示,现代CMake允许我们以非常紧凑和模块化的方式配置和构建项目。作为一个例子,我们将使用前两个示例中的基本元胞自动机,现在将其移植到Fortran。
准备工作
文件树结构与前两个示例非常相似。我们用Fortran源代码替换了C++,现在就没有头文件了:
.├── CMakeLists.txt├── external│ ├── CMakeLists.txt│ ├── conversion.f90│ └── README.md├── src│ ├── CMakeLists.txt│ ├── evolution│ │ ├── ancestors.f90│ │ ├── CMakeLists.txt│ │ ├── empty.f90│ │ └── evolution.f90│ ├── initial│ │ ├── CMakeLists.txt│ │ └── initial.f90│ ├── io│ │ ├── CMakeLists.txt│ │ └── io.f90│ ├── main.f90│ └── parser│ ├── CMakeLists.txt│ └── parser.f90└── tests├── CMakeLists.txt└── test.f90
主程序在src/main.f90中:
program example
  use parser, only: get_arg_as_int
  use conversion, only: binary_representation
  use initial, only: initial_distribution
  use io, only: print_row
  use evolution, only: evolve
  implicit none
  integer :: num_steps
  integer :: length
  integer :: rule_decimal
  integer :: rule_binary(8)
  integer, allocatable :: row(:)
  integer :: step
  ! parse arguments
  num_steps = get_arg_as_int(1)
  length = get_arg_as_int(2)
  rule_decimal = get_arg_as_int(3)
  ! print information about parameters
  print *, "number of steps: ", num_steps
  print *, "length: ", length
  print *, "rule: ", rule_decimal
  ! obtain binary representation for the rule
  rule_binary = binary_representation(rule_decimal)
  ! create initial distribution
  allocate(row(length))
  call initial_distribution(row)
  ! print initial configuration
  call print_row(row)
  ! the system evolves, print each step
  do step = 1, num_steps
    call evolve(row, rule_binary)
    call print_row(row)
  end do
  deallocate(row)
end program
与前面的示例一样,我们已经将conversion模块放入external/conversion.f90中:
module conversion
  implicit none
  public binary_representation
  private
contains
  pure function binary_representation(n_decimal)
    integer, intent(in) :: n_decimal
    integer :: binary_representation(8)
    integer :: pos
    integer :: n
    binary_representation = 0
    pos = 8
    n = n_decimal
    do while (n > 0)
      binary_representation(pos) = mod(n, 2)
      n = (n - binary_representation(pos))/2
      pos = pos - 1
    end do
  end function
end module
evolution库分成三个文件,大部分在src/evolution/evolution.f90中:
module evolution
  implicit none
  public evolve
  private
contains
  subroutine not_visible()
    ! no-op call to demonstrate private/public visibility
    call empty_subroutine_no_interface()
  end subroutine
  pure subroutine evolve(row, rule_binary)
    use ancestors, only: compute_ancestors
    integer, intent(inout) :: row(:)
    integer, intent(in) :: rule_binary(8)
    integer :: i
    integer :: left, center, right
    integer :: ancestry
    integer, allocatable :: new_row(:)
    allocate(new_row(size(row)))
    do i = 1, size(row)
      left = i - 1
      center = i
      right = i + 1
      if (left < 1) left = left + size(row)
      if (right > size(row)) right = right - size(row)
      ancestry = compute_ancestors(row, left, center, right)
      new_row(i) = rule_binary(ancestry)
    end do
    row = new_row
    deallocate(new_row)
  end subroutine
end module
祖先计算是在src/evolution/ancestors.f90:
module ancestors
  implicit none
  public compute_ancestors
  private
  contains
  pure integer function compute_ancestors(row, left, center, right) result(i)
    integer, intent(in) :: row(:)
    integer, intent(in) :: left, center, right
    i = 4*row(left) + 2*row(center) + 1*row(right)
    i = 8 - i
  end function
end module
还有一个“空”模块在src/evolution/empty.f90中:
module empty
  implicit none
  public empty_subroutine
  private
contains
  subroutine empty_subroutine()
  end subroutine
end module
subroutine 
empty_subroutine_no_interface()
  use empty, only: empty_subroutine
  call empty_subroutine()
end subroutine
启动条件的代码位于src/initial/initial.f90:
module initial
  implicit none
  public initial_distribution
  private
contains
    pure subroutine initial_distribution(row)
    integer, intent(out) :: row(:)
    row = 0
    row(size(row)/2) = 1
    end subroutine
end module
src/io/io.f90包含一个打印输出:
module io
  implicit none
  public print_row
  private
  contains
  subroutine print_row(row)
    integer, intent(in) :: row(:)
    character(size(row)) :: line
    integer :: i
    do i = 1, size(row)
      if (row(i) == 1) then
          line(i:i) = '*'
      else
          line(i:i) = ' '
      end if
    end do
    print *, line
  end subroutine
end module
src/parser/parser.f90用于解析命令行参数:
module parser
  implicit none
  public get_arg_as_int
  private
  contains
  integer function get_arg_as_int(n) result(i)
    integer, intent(in) :: n
    character(len=32) :: arg
    call get_command_argument(n, arg)
    read(arg , *) i
  end function
end module
最后,使用tests/test.f90对上面的实现进行测试:
program test
  use evolution, only: evolve
  implicit none
  integer :: row(9)
  integer :: expected_result(9)
  integer :: rule_binary(8)
  integer :: i
  ! test rule 90
  row = (/0, 1, 0, 1, 0, 1, 0, 1, 0/)
  rule_binary = (/0, 1, 0, 1, 1, 0, 1, 0/)
  call evolve(row, rule_binary)
  expected_result = (/1, 0, 0, 0, 0, 0, 0, 0, 1/)
  do i = 1, 9
      if (row(i) /= expected_result(i)) then
          print *, 'ERROR: test for rule 90 failed'
          call exit(1)
      end if
  end do
  ! test rule 222
  row = (/0, 0, 0, 0, 1, 0, 0, 0, 0/)
  rule_binary = (/1, 1, 0, 1, 1, 1, 1, 0/)
  call evolve(row, rule_binary)
  expected_result = (/0, 0, 0, 1, 1, 1, 0, 0, 0/)
  do i = 1, 9
      if (row(i) /= expected_result(i)) then
          print *, 'ERROR: test for rule 222 failed'
          call exit(1)
      end if
  end do
end program
具体实施
- 主
CMakeLists.txt类似于第7节,我们只是将CXX换成Fortran,去掉C++11的要求: ```cmake cmake_minimum_required(VERSION 3.5 FATAL_ERROR) 
project(recipe-09 LANGUAGES Fortran)
include(GNUInstallDirs) set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}) set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR})
defines targets and sources
add_subdirectory(src)
contains an “external” library we will link to
add_subdirectory(external)
enable testing and define tests
enable_testing() add_subdirectory(tests)
2. 
目标和源在`src/CMakeLists.txt`中定义(conversion目标除外):
```cmake
add_executable(automata main.f90)
add_subdirectory(evolution)
add_subdirectory(initial)
add_subdirectory(io)
add_subdirectory(parser)
target_link_libraries(automata
  PRIVATE
    conversion
    evolution
    initial
    io
    parser
  )
- conversion库在
external/CMakeLists.txt中定义: ```cmake add_library(conversion “”) 
target_sources(conversion PUBLIC ${CMAKE_CURRENT_LIST_DIR}/conversion.f90 )
4. 
`src/CMakeLists.txt`文件添加了更多的子目录,这些子目录又包含`CMakeLists.txt`文件。它们在结构上都是相似的,例如:`src/initial/CMakeLists.txt`包含以下内容:
```cmake
add_library(initial "")
target_sources(initial
  PUBLIC
      ${CMAKE_CURRENT_LIST_DIR}/initial.f90
  )
- 有个例外的是
src/evolution/CMakeLists.txt中的evolution库,我们将其分为三个源文件: ```cmake add_library(evolution “”) 
target_sources(evolution PRIVATE empty.f90 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/ancestors.f90 ${CMAKE_CURRENT_LIST_DIR}/evolution.f90 )
6. 
单元测试在`tests/CMakeLists.txt`中注册:
```cmake
add_executable(fortran_test test.f90)
target_link_libraries(fortran_test evolution)
add_test(
  NAME
      test_evolution
  COMMAND
      $<TARGET_FILE:fortran_test>
  )
- 配置和构建项目,将产生以下输出:
$ mkdir -p build $ cd build $ cmake .. $ cmake --build . Scanning dependencies of target conversion [ 4%] Building Fortran object external/CMakeFiles/conversion.dir/conversion.f90.o [ 8%] Linking Fortran static library ../lib64/libconversion.a [ 8%] Built target conversion Scanning dependencies of target evolution [ 12%] Building Fortran object src/evolution/CMakeFiles/evolution.dir/ancestors.f90.o [ 16%] Building Fortran object src/evolution/CMakeFiles/evolution.dir/empty.f90.o [ 20%] Building Fortran object src/evolution/CMakeFiles/evolution.dir/evolution.f90.o [ 25%] Linking Fortran static library ../../lib64/libevolution.a [ 25%] Built target evolution Scanning dependencies of target initial [ 29%] Building Fortran object src/initial/CMakeFiles/initial.dir/initial.f90.o [ 33%] Linking Fortran static library ../../lib64/libinitial.a [ 33%] Built target initial Scanning dependencies of target io [ 37%] Building Fortran object src/io/CMakeFiles/io.dir/io.f90.o [ 41%] Linking Fortran static library ../../lib64/libio.a [ 41%] Built target io Scanning dependencies of target parser [ 45%] Building Fortran object src/parser/CMakeFiles/parser.dir/parser.f90.o [ 50%] Linking Fortran static library ../../lib64/libparser.a [ 50%] Built target parser Scanning dependencies of target example [ 54%] Building Fortran object src/CMakeFiles/example.dir/__/external/conversion.f90.o [ 58%] Building Fortran object src/CMakeFiles/example.dir/evolution/ancestors.f90.o [ 62%] Building Fortran object src/CMakeFiles/example.dir/evolution/evolution.f90.o [ 66%] Building Fortran object src/CMakeFiles/example.dir/initial/initial.f90.o [ 70%] Building Fortran object src/CMakeFiles/example.dir/io/io.f90.o [ 75%] Building Fortran object src/CMakeFiles/example.dir/parser/parser.f90.o [ 79%] Building Fortran object src/CMakeFiles/example.dir/main.f90.o [ 83%] Linking Fortran executable ../bin/example [ 83%] Built target example Scanning dependencies of target fortran_test [ 87%] Building Fortran object tests/CMakeFiles/fortran_test.dir/__/src/evolution/ancestors.f90.o [ 91%] Building Fortran object tests/CMakeFiles/fortran_test.dir/__/src/evolution/evolution.f90.o [ 95%] Building Fortran object tests/CMakeFiles/fortran_test.dir/test.f90.o [100%] Linking Fortran executable 
- 最后,运行单元测试: ```shell $ ctest
 
Running tests… Start 1: test_evolution 1/1 Test #1: test_evolution ………………. Passed 0.00 sec
100% tests passed, 0 tests failed out of 1
<a name="b3fbd195"></a>
## 工作原理
第7节中使用`add_subdirectory`限制范围,将从下往上讨论CMake结构,从定义每个库的单个`CMakeLists.txt`文件开始,比如`src/evolution/CMakeLists.txt`:
```cmake
add_library(evolution "")
target_sources(evolution
  PRIVATE
      empty.f90
  PUBLIC
    ${CMAKE_CURRENT_LIST_DIR}/ancestors.f90
    ${CMAKE_CURRENT_LIST_DIR}/evolution.f90
  )
这些独立的CMakeLists.txt文件定义了源文件的库,遵循与前两个示例相同的方式:开发或维护人员可以对其中文件分而治之。
首先用add_library定义库名,然后定义它的源和包含目录,以及它们的目标可见性。这种情况下,因为它们的模块接口是在库之外访问,所以ancestors.f90和evolution.f90都是PUBLIC,而模块接口empty.f90不能在文件之外访问,因此将其标记为PRIVATE。
向上移动一层,库在src/CMakeLists.txt中封装:
add_executable(automata main.f90)
add_subdirectory(evolution)
add_subdirectory(initial)
add_subdirectory(io)
add_subdirectory(parser)
target_link_libraries(automata
  PRIVATE
    conversion
    evolution
    initial
    io
    parser
  )
这个文件在主CMakeLists.txt中被引用。这意味着我们使用CMakeLists.txt文件(使用add_subdirectory添加)构建项目。正如第7节中讨论的,使用add_subdirectory限制范围,这种方法可以扩展到更大型的项目,而不需要在多个目录之间的全局变量中携带源文件列表,还可以隔离范围和名称空间。
将这个Fortran示例与C++版本(第7节)进行比较,我们可以注意到,在Fortran的情况下,相对的CMake工作量比较小;我们不需要使用target_include_directory,因为没有头文件,接口是通过生成的Fortran模块文件进行通信。另外,我们既不需要担心target_sources中列出的源文件的顺序,也不需要在库之间强制执行任何显式依赖关系。CMake能够从源文件依赖项推断Fortran模块依赖项。使用target_sources与PRIVATE和PUBLIC资源结合使用,以紧凑和健壮的方式表示接口。
更多信息
这个示例中,我们没有指定应该放置Fortran模块文件的目录,并且保持了这个透明。模块文件的位置可以通过设置CMAKE_Fortran_MODULE_DIRECTORY变量来指定。注意,也可以将其设置为Fortran_MODULE_DIRECTORY,从而实现更好的控制。详细可见:https://cmake.org/cmake/help/v3.5/prop_tgt/Fortran_MODULE_DIRECTORY.html
