分布式搜索引擎02

在昨天的学习中,我们已经导入了大量数据到elasticsearch中,实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。

所以今天,我们研究下elasticsearch的数据搜索功能。我们会分别使用DSLRestClient实现搜索。

0.学习目标

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

查询的语法基本一致:

  1. GET /indexName/_search
  2. {
  3. "query": {
  4. "查询类型": {
  5. "查询条件": "条件值"
  6. }
  7. }
  8. }

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
  1. // 查询所有
  2. GET /indexName/_search
  3. {
  4. "query": {
  5. "match_all": {
  6. }
  7. }
  8. }

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

例如京东

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

  1. GET /indexName/_search
  2. {
  3. "query": {
  4. "match": {
  5. "FIELD": "TEXT"
  6. }
  7. }
  8. }

mulit_match语法如下:

  1. GET /indexName/_search
  2. {
  3. "query": {
  4. "multi_match": {
  5. "query": "TEXT",
  6. "fields": ["FIELD1", " FIELD12"]
  7. }
  8. }
  9. }

1.2.3.示例

match查询示例:

image-20210721170455419.png

multi_match查询示例:

image-20210721170720691.png

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

  1. // term查询
  2. GET /indexName/_search
  3. {
  4. "query": {
  5. "term": {
  6. "FIELD": {
  7. "value": "VALUE"
  8. }
  9. }
  10. }
  11. }

示例:

当我搜索的是精确词条时,能正确查询出结果:

image-20210721171655308.png

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

image-20210721171838378.png

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

  1. // range查询
  2. GET /indexName/_search
  3. {
  4. "query": {
  5. "range": {
  6. "FIELD": {
  7. "gte": 10, // 这里的gte代表大于等于,gt则代表大于
  8. "lte": 20 // lte代表小于等于,lt则代表小于
  9. }
  10. }
  11. }
  12. }

示例:

image-20210721172307172.png

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:

image.png

附近的车:

image.png

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

DKV9HZbVS6.gif

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

  1. // geo_bounding_box查询
  2. GET /indexName/_search
  3. {
  4. "query": {
  5. "geo_bounding_box": {
  6. "FIELD": {
  7. "top_left": { // 左上点
  8. "lat": 31.1,
  9. "lon": 121.5
  10. },
  11. "bottom_right": { // 右下点
  12. "lat": 30.9,
  13. "lon": 121.7
  14. }
  15. }
  16. }
  17. }
  18. }

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

vZrdKAh19C.gif

语法说明:

  1. // geo_distance 查询
  2. GET /indexName/_search
  3. {
  4. "query": {
  5. "geo_distance": {
  6. "distance": "15km", // 半径
  7. "FIELD": "31.21,121.5" // 圆心
  8. }
  9. }
  10. }

示例:

我们先搜索陆家嘴附近15km的酒店:

image-20210721175443234.png

发现共有47家酒店。

然后把半径缩短到3公里:

image-20210721182031475.png

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

  1. [
  2. {
  3. "_score" : 17.850193,
  4. "_source" : {
  5. "name" : "虹桥如家酒店真不错",
  6. }
  7. },
  8. {
  9. "_score" : 12.259849,
  10. "_source" : {
  11. "name" : "外滩如家酒店真不错",
  12. }
  13. },
  14. {
  15. "_score" : 11.91091,
  16. "_source" : {
  17. "name" : "迪士尼如家酒店真不错",
  18. }
  19. }
  20. ]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

image.png

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

image.png

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

image.png

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

image.png

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

image-20210721191544750.png

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

  1. GET /hotel/_search
  2. {
  3. "query": {
  4. "function_score": {
  5. "query": { .... }, // 原始查询,可以是任意条件
  6. "functions": [ // 算分函数
  7. {
  8. "filter": { // 满足的条件,品牌必须是如家
  9. "term": {
  10. "brand": "如家"
  11. }
  12. },
  13. "weight": 2 // 算分权重为2
  14. }
  15. ],
  16. "boost_mode": "sum" // 加权模式,求和
  17. }
  18. }
  19. }

测试,在未添加算分函数时,如家得分如下:

image-20210721193152520.png

添加了算分函数后,如家得分就提升了:

image-20210721193458182.png

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

image.png

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

  1. GET /hotel/_search
  2. {
  3. "query": {
  4. "bool": {
  5. "must": [
  6. {"term": {"city": "上海" }}
  7. ],
  8. "should": [
  9. {"term": {"brand": "皇冠假日" }},
  10. {"term": {"brand": "华美达" }}
  11. ],
  12. "must_not": [
  13. { "range": { "price": { "lte": 500 } }}
  14. ],
  15. "filter": [
  16. { "range": {"score": { "gte": 45 } }}
  17. ]
  18. }
  19. }
  20. }

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

image-20210721194744183.png

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

  1. GET /indexName/_search
  2. {
  3. "query": {
  4. "match_all": {}
  5. },
  6. "sort": [
  7. {
  8. "FIELD": "desc" // 排序字段、排序方式ASCDESC
  9. }
  10. ]
  11. }

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

image-20210721195728306.png

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

  1. GET /indexName/_search
  2. {
  3. "query": {
  4. "match_all": {}
  5. },
  6. "sort": [
  7. {
  8. "_geo_distance" : {
  9. "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
  10. "order" : "asc", // 排序方式
  11. "unit" : "km" // 排序的距离单位
  12. }
  13. }
  14. ]
  15. }

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

image-20210721200214690.png

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

  1. GET /hotel/_search
  2. {
  3. "query": {
  4. "match_all": {}
  5. },
  6. "from": 0, // 分页开始的位置,默认为0
  7. "size": 10, // 期望获取的文档总数
  8. "sort": [
  9. {"price": "asc"}
  10. ]
  11. }

2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

  1. GET /hotel/_search
  2. {
  3. "query": {
  4. "match_all": {}
  5. },
  6. "from": 990, // 分页开始的位置,默认为0
  7. "size": 10, // 期望获取的文档总数
  8. "sort": [
  9. {"price": "asc"}
  10. ]
  11. }

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

image.png

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

image-20210721201003229.png

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size
    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search
    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll
    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

image.png

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

2.3.2.实现高亮

高亮的语法

  1. GET /hotel/_search
  2. {
  3. "query": {
  4. "match": {
  5. "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
  6. }
  7. },
  8. "highlight": {
  9. "fields": { // 指定要高亮的字段
  10. "FIELD": {
  11. "pre_tags": "<em>", // 用来标记高亮字段的前置标签
  12. "post_tags": "</em>" // 用来标记高亮字段的后置标签
  13. }
  14. }
  15. }
  16. }

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

image-20210721203349633.png

2.4.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:
image.png

3.RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象
  • 2)准备请求参数
  • 3)发起请求
  • 4)解析响应

3.1.快速入门

我们以match_all查询为例

3.1.1.发起查询请求

image-20210721203950559.png

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名
  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:
image-20210721215640790.png

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:
image-20210721215729236.png

3.1.2.解析响应