1、操作系统的进程、线程发展
2、进程的概念
我们都知道计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序则是具有某种功能的程序,程序是运行于操作系统之上的。
进程,是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。
进程是一种抽象的概念,从来没有统一的标准定义。进程一般由程序、数据集合和进程控制块三部分组成。
- 程序用于描述进程要完成的功能,是控制进程执行的指令集;
- 数据集合是程序在执行时所需要的数据和工作区;
- 程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯一标志。
进程具有的特征:
- 动态性:进程是程序的一次执行过程,是临时的,有生命期的,是动态产生,动态消亡的;
- 并发性:任何进程都可以同其他进程一起并发执行;
- 独立性:进程是系统进行资源分配和调度的一个独立单位;
- 结构性:进程由程序、数据和进程控制块三部分组成。
3、线程的概念
在早期的操作系统中并没有线程的概念,进程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。任务调度采用的是时间片轮转的抢占式调度方式,而进程是任务调度的最小单位,每个进程有各自独立的一块内存,使得各个进程之间内存地址相互隔离。
后来,随着计算机的发展,对CPU的要求越来越高,进程之间的切换开销较大,已经无法满足越来越复杂的程序的要求了。于是就发明了线程。
线程是程序执行中一个单一的顺序控制流程,是程序执行流的最小单元,是处理器调度和分派的基本单位。一个进程可以有一个或多个线程,各个线程之间共享程序的内存空间(也就是所在进程的内存空间)。一个标准的线程由线程ID、当前指令指针(PC)、寄存器和堆栈组成。而进程由内存空间(代码、数据、进程空间、打开的文件)和一个或多个线程组成。
4、任务调度
线程是什么?要理解这个概念,需要先了解一下操作系统的一些相关概念。大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式。
在一个进程中,当一个线程任务执行几毫秒后,会由操作系统的内核(负责管理各个任务)进行调度,通过硬件的计数器中断处理器,让该线程强制暂停并将该线程的寄存器放入内存中,通过查看线程列表决定接下来执行哪一个线程,并从内存中恢复该线程的寄存器,最后恢复该线程的执行,从而去执行下一个任务。
上述过程中,任务执行的那一小段时间叫做时间片,任务正在执行时的状态叫运行状态,被暂停的线程任务状态叫做就绪状态,意为等待下一个属于它的时间片的到来。
这种方式保证了每个线程轮流执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发。
5、进程和线程的区别
前面讲了进程与线程,但可能你还觉得迷糊,感觉他们很类似。的确,进程与线程有着千丝万缕的关系,下面就让我们一起来理一理:
- 线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位;
- 一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;
- 进程之间相互独立,但同一进程下的各个线程之间共享程序的内存空间(包括代码段、数据集、堆等)及一些进程级的资源(如打开文件和信号),某进程内的线程在其它进程不可见;
- 调度和切换:线程上下文切换比进程上下文切换要快得多。
6、线程的生命周期
当线程的数量小于处理器的数量时,线程的并发是真正的并发,不同的线程运行在不同的处理器上。但当线程的数量大于处理器的数量时,线程的并发会受到一些阻碍,此时并不是真正的并发,因为此时至少有一个处理器会运行多个线程。
在单个处理器运行多个线程时,并发是一种模拟出来的状态。操作系统采用时间片轮转的方式轮流执行每一个线程。现在,几乎所有的现代操作系统采用的都是时间片轮转的抢占式调度方式,如我们熟悉的Unix、Linux、Windows及macOS等流行的操作系统。
我们知道线程是程序执行的最小单位,也是任务执行的最小单位。在早期只有进程的操作系统中,进程有五种状态,创建、就绪、运行、阻塞(等待)、退出。早期的进程相当于现在的只有单个线程的进程,那么现在的多线程也有五种状态,现在的多线程的生命周期与早期进程的生命周期类似。
线程的生命周期:
# 创建:一个新的线程被创建,等待该线程被调用执行;
# 就绪:时间片已用完,此线程被强制暂停,等待下一个属于它的时间片到来;
# 运行:此线程正在执行,正在占用时间片;
# 阻塞:也叫等待状态,等待某一事件(如IO或另一个线程)执行完;
# 退出:一个线程完成任务或者其他终止条件发生,该线程终止进入退出状态,退出状态释放该线程所分配的资源。
7、协程(Coroutines)
协程,英文Coroutines,是一种基于线程之上,但又比线程更加轻量级的存在,这种由程序员自己写程序来管理的轻量级线程叫做『用户空间线程』,具有对内核来说不可见的特性。因为是自主开辟的异步任务,所以很多人也更喜欢叫它们纤程(Fiber),或者绿色线程(GreenThread)。正如一个进程可以拥有多个线程一样,一个线程也可以拥有多个协程。
协程解决的是线程的切换开销和内存开销的问题
* 用户空间 首先是在用户空间, 避免内核态和用户态的切换导致的成本。
* 由语言或者框架层调度
* 更小的栈空间允许创建大量实例(百万级别)
8、三种线程模型
无论语言层面何种并发模型,到了操作系统层面,一定是以线程的形态存在的。而操作系统根据资源访问权限的不同,体系架构可分为用户空间和内核空间;内核空间主要操作访问CPU资源、I/O资源、内存资源等硬件资源,为上层应用程序提供最基本的基础资源,用户空间呢就是上层应用程序的固定活动空间,用户空间不可以直接访问资源,必须通过“系统调用”、“库函数”或“Shell脚本”来调用内核空间提供的资源。我们现在的计算机语言,可以狭义的认为是一种“软件”,它们中所谓的“线程”,往往是用户态的线程,和操作系统本身内核态的线程(简称KSE),还是有区别的。
8.1、用户级线程模型(M : 1)
将多个用户级线程映射到一个内核级线程,线程管理在用户空间完成。此模式中,用户级线程对操作系统不可见(即透明)。
8.2、内核级线程模型(1:1)
将每个用户级线程映射到一个内核级线程。
每个线程由内核调度器独立的调度,所以如果一个线程阻塞则不影响其他的线程。 优点:在多核处理器的硬件的支持下,内核空间线程模型支持了真正的并行,当一个线程被阻塞后,允许另一个线程继续执行,所以并发能力较强。
缺点:每创建一个用户级线程都需要创建一个内核级线程与其对应,这样创建线程的开销比较大,会影响到应用程序的性能。
8.3、两级线程模型(M:N)
内核线程和用户线程的数量比为 M : N,内核用户空间综合了前两种的优点。
一个进程中可以对应多个内核级线程,但是进程中的线程不和内核线程一一对应;这种线程模型会先创建多个内核级线程,然后用自身的用户级线程去对应创建的多个内核级线程,自身的用户级线程需要本身程序去调度,内核级的线程交给操作系统内核去调度。这使得大部分的线程上下文切换都发生在用户空间,而多个内核线程又可以充分利用处理器资源。
Go语言的线程模型就是一种特殊的两级线程模型(GPM调度模型)。