SnowFlake 算法核心思想

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

image.png

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分,是 1 个 bit:0,这个是无意义的。
  • 第二个部分是 41 个 bit:表示的是时间戳。
  • 第三个部分是 5 个 bit:表示的是机房 id,10001。
  • 第四个部分是 5 个 bit:表示的是机器 id,1 1001。
  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

①1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

②41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

③10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

④12 bit:这个是用来记录同一个毫秒内产生的不同 id。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 id 就出来了,类似于:

image.png

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id。

SnowFlake 算法的实现代码如下:

  1. public class IdWorker {
  2. //因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  3. //机器ID 2进制5位 32位减掉1位 31个
  4. private long workerId;
  5. //机房ID 2进制5位 32位减掉1位 31个
  6. private long datacenterId;
  7. //代表一毫秒内生成的多个id的最新序号 12位 4096 -1 = 4095 个
  8. private long sequence;
  9. //设置一个时间初始值 2^41 - 1 差不多可以用69年
  10. private long twepoch = 1585644268888L;
  11. //5位的机器id
  12. private long workerIdBits = 5L;
  13. //5位的机房id
  14. private long datacenterIdBits = 5L;
  15. //每毫秒内产生的id数 2 的 12次方
  16. private long sequenceBits = 12L;
  17. // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
  18. private long maxWorkerId = -1L ^ (-1L << workerIdBits);
  19. // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
  20. private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
  21. private long workerIdShift = sequenceBits;
  22. private long datacenterIdShift = sequenceBits + workerIdBits;
  23. private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
  24. private long sequenceMask = -1L ^ (-1L << sequenceBits);
  25. //记录产生时间毫秒数,判断是否是同1毫秒
  26. private long lastTimestamp = -1L;
  27. public long getWorkerId(){
  28. return workerId;
  29. }
  30. public long getDatacenterId() {
  31. return datacenterId;
  32. }
  33. public long getTimestamp() {
  34. return System.currentTimeMillis();
  35. }
  36. public IdWorker(long workerId, long datacenterId, long sequence) {
  37. // 检查机房id和机器id是否超过31 不能小于0
  38. if (workerId > maxWorkerId || workerId < 0) {
  39. throw new IllegalArgumentException(
  40. String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
  41. }
  42. if (datacenterId > maxDatacenterId || datacenterId < 0) {
  43. throw new IllegalArgumentException(
  44. String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
  45. }
  46. this.workerId = workerId;
  47. this.datacenterId = datacenterId;
  48. this.sequence = sequence;
  49. }
  50. // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
  51. public synchronized long nextId() {
  52. // 这儿就是获取当前时间戳,单位是毫秒
  53. long timestamp = timeGen();
  54. if (timestamp < lastTimestamp) {
  55. System.err.printf(
  56. "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
  57. throw new RuntimeException(
  58. String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
  59. lastTimestamp - timestamp));
  60. }
  61. // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
  62. // 这个时候就得把seqence序号给递增1,最多就是4096
  63. if (lastTimestamp == timestamp) {
  64. // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
  65. //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
  66. sequence = (sequence + 1) & sequenceMask;
  67. //当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
  68. if (sequence == 0) {
  69. timestamp = tilNextMillis(lastTimestamp);
  70. }
  71. } else {
  72. sequence = 0;
  73. }
  74. // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
  75. lastTimestamp = timestamp;
  76. // 这儿就是最核心的二进制位运算操作,生成一个64bit的id
  77. // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
  78. // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
  79. return ((timestamp - twepoch) << timestampLeftShift) |
  80. (datacenterId << datacenterIdShift) |
  81. (workerId << workerIdShift) | sequence;
  82. }
  83. /**
  84. * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
  85. * @param lastTimestamp
  86. * @return
  87. */
  88. private long tilNextMillis(long lastTimestamp) {
  89. long timestamp = timeGen();
  90. while (timestamp <= lastTimestamp) {
  91. timestamp = timeGen();
  92. }
  93. return timestamp;
  94. }
  95. //获取当前时间戳
  96. private long timeGen(){
  97. return System.currentTimeMillis();
  98. }
  99. /**
  100. * main 测试类
  101. * @param args
  102. */
  103. public static void main(String[] args) {
  104. System.out.println(1&4596);
  105. System.out.println(2&4596);
  106. System.out.println(6&4596);
  107. System.out.println(6&4596);
  108. System.out.println(6&4596);
  109. System.out.println(6&4596);
  110. }
  111. }

SnowFlake算法的优点:

(1)高性能高可用:生成时不依赖于数据库,完全在内存中生成。

(2)容量大:每秒中能生成数百万的自增ID。

(3)ID自增:存入数据库中,索引效率高。

SnowFlake算法的缺点:

  • 依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。

实际中我们的机房并没有那么多,我们可以改进改算法,将10bit的机器id优化,成业务表或者和我们系统相关的业务。