1.进程
在计算机中,我们把一个任务称为一个进程,浏览器就是一个进程,视频播放器是另一个进程,类似的,音乐播放器和Word都是进程。
某些进程内部还需要同时执行多个子任务。例如,我们在使用Word时,Word可以让我们一边打字,一边进行拼写检查,同时还可以在后台进行打印,我们把子任务称为线程。
进程和线程的关系就是:一个进程可以包含一个或多个线程,但至少会有一个线程。
2.进程 vs 线程
进程和线程是包含关系,但是多任务既可以由多进程实现,也可以由单进程内的多线程实现,还可以混合多进程+多线程。
具体采用哪种方式,要考虑到进程和线程的特点。
和多线程相比,多进程的缺点在于:
- 创建进程比创建线程开销大,尤其是在Windows系统上;
- 进程间通信比线程间通信要慢,因为线程间通信就是读写同一个变量,速度很快。
而多进程的优点在于:
多进程稳定性比多线程高,因为在多进程的情况下,一个进程崩溃不会影响其他进程,而在多线程的情况下,任何一个线程崩溃会直接导致整个进程崩溃。
3.Java多线程
Java多线程编程的特点又在于:
- 多线程模型是Java程序最基本的并发模型;
- 后续读写网络、数据库、Web开发等都依赖Java多线程模型。
1.创建新线程
Java语言内置了多线程支持。当Java程序启动的时候,实际上是启动了一个JVM进程,然后,JVM启动主线程来执行main()方法。在main()方法中,我们又可以启动其他线程。
方法一:从Thread派生一个自定义类,然后覆写run()方法: ```java public class Main { public static void main(String[] args) {
} }Thread t = new MyThread();
t.start(); // 启动新线程
class MyThread extends Thread { @Override public void run() { System.out.println(“start new thread!”); } }
方法二:创建Thread实例时,传入一个Runnable实例:
```java
public class Main {
public static void main(String[] args) {
Thread t = new Thread(new MyRunnable());
t.start(); // 启动新线程
}
}
class MyRunnable implements Runnable {
@Override
public void run() {
System.out.println("start new thread!");
}
}
或者用Java8引入的lambda语法进一步简写为:
public class Main {
public static void main(String[] args) {
Thread t = new Thread(() -> {
System.out.println("start new thread!");
});
t.start(); // 启动新线程
}
}
1.线程的优先级
可以对线程设定优先级,设定优先级的方法是:
Thread.setPriority(int n) // 1~10, 默认值5
优先级高的线程被操作系统调度的优先级较高,操作系统对高优先级线程可能调度更频繁,但我们决不能通过设置优先级来确保高优先级的线程一定会先执行。
Java用Thread对象表示一个线程,通过调用start()启动一个新线程;
一个线程对象只能调用一次start()方法;
线程的执行代码写在run()方法中;
线程调度由操作系统决定,程序本身无法决定调度顺序;
Thread.sleep()可以把当前线程暂停一段时间。
2.线程的状态
在Java程序中,一个线程对象只能调用一次start()方法启动新线程,并在新线程中执行run()方法。一旦run()方法执行完毕,线程就结束了。因此,Java线程的状态有以下几种:
- New:新创建的线程,尚未执行;
- Runnable:运行中的线程,正在执行run()方法的Java代码;
- Blocked:运行中的线程,因为某些操作被阻塞而挂起;
- Waiting:运行中的线程,因为某些操作在等待中;
- Timed Waiting:运行中的线程,因为执行sleep()方法正在计时等待;
- Terminated:线程已终止,因为run()方法执行完毕。
当线程启动后,它可以在Runnable、Blocked、Waiting和Timed Waiting这几个状态之间切换,直到最后变成Terminated状态,线程终止。
线程终止的原因有:
- 线程正常终止:run()方法执行到return语句返回;
- 线程意外终止:run()方法因为未捕获的异常导致线程终止;
- 对某个线程的Thread实例调用stop()方法强制终止(强烈不推荐使用)。
Java线程对象Thread的状态包括:New、Runnable、Blocked、Waiting、Timed Waiting和Terminated;
通过对另一个线程对象调用join()方法可以等待其执行结束;
可以指定等待时间,超过等待时间线程仍然没有结束就不再等待;
对已经运行结束的线程调用join()方法会立刻返回。
3.中断线程
对目标线程调用interrupt()方法可以请求中断一个线程,目标线程通过检测isInterrupted()标志获取自身是否已中断。如果目标线程处于等待状态,该线程会捕获到InterruptedException;
目标线程检测到isInterrupted()为true或者捕获了InterruptedException都应该立刻结束自身线程;
通过标志位判断需要正确使用volatile关键字;
volatile关键字解决了共享变量在线程间的可见性问题。
4.守护线程
守护线程(Daemon Thread)。
守护线程是指为其他线程服务的线程。在JVM中,所有非守护线程都执行完毕后,无论有没有守护线程,虚拟机都会自动退出。
因此,JVM退出时,不必关心守护线程是否已结束。
如何创建守护线程呢?方法和普通线程一样,只是在调用start()方法前,调用setDaemon(true)把该线程标记为守护线程:
Thread t = new MyThread();
t.setDaemon(true);
t.start();
守护线程是为其他线程服务的线程;
所有非守护线程都执行完毕后,虚拟机退出;
守护线程不能持有需要关闭的资源(如打开文件等)。
5.线程同步
原子操作是指不能被中断的一个或一系列操作。
多线程模型下,要保证逻辑正确,对共享变量进行读写时,必须保证一组指令以原子方式执行:即某一个线程执行时,其他线程必须等待。
通过加锁和解锁的操作,就能保证3条指令总是在一个线程执行期间,不会有其他线程会进入此指令区间。即使在执行期线程被操作系统中断执行,其他线程也会因为无法获得锁导致无法进入此指令区间。只有执行线程将锁释放后,其他线程才有机会获得锁并执行。这种加锁和解锁之间的代码块我们称之为临界区(Critical Section),任何时候临界区最多只有一个线程能执行。
可见,保证一段代码的原子性就是通过加锁和解锁实现的。Java程序使用synchronized关键字对一个对象进行加锁:
synchronized(Counter.lock) { // 获取锁
...
} // 释放锁
它表示用Counter.lock实例作为锁,两个线程在执行各自的synchronized(Counter.lock) { … }代码块时,必须先获得锁,才能进入代码块进行。执行结束后,在synchronized语句块结束会自动释放锁。这样一来,对Counter.count变量进行读写就不可能同时进行。上述代码无论运行多少次,最终结果都是0。
使用synchronized解决了多线程同步访问共享变量的正确性问题。但是,它的缺点是带来了性能下降。因为synchronized代码块无法并发执行。此外,加锁和解锁需要消耗一定的时间,所以,synchronized会降低程序的执行效率。
我们来概括一下如何使用synchronized:
- 找出修改共享变量的线程代码块;
- 选择一个共享实例作为锁;
- 使用synchronized(lockObject) { … }。
在使用synchronized的时候,不必担心抛出异常。因为无论是否有异常,都会在synchronized结束处正确释放锁:
public void add(int m) {
synchronized (obj) {
if (m < 0) {
throw new RuntimeException();
}
this.value += m;
} // 无论有无异常,都会在此释放锁
}
1.不需要synchronized的操作
JVM规范定义了几种原子操作:
- 基本类型(long和double除外)赋值,例如:int n = m;
- 引用类型赋值,例如:List
list = anotherList。
long和double是64位数据,JVM没有明确规定64位赋值操作是不是一个原子操作,不过在x64平台的JVM是把long和double的赋值作为原子操作实现的。
多线程同时读写共享变量时,会造成逻辑错误,因此需要通过synchronized同步;
同步的本质就是给指定对象加锁,加锁后才能继续执行后续代码;
注意加锁对象必须是同一个实例;
对JVM定义的单个原子操作不需要同步。
6.同步方法
public void add(int n) {
synchronized(this) {
count += n;
}
}
synchronized锁住的对象是this,即当前实例,这又使得创建多个Counter实例的时候,它们之间互不影响,可以并发执行。
如果一个类被设计为允许多线程正确访问,我们就说这个类就是“线程安全”的(thread-safe),Java标准库的java.lang.StringBuffer也是线程安全的。
还有一些不变类,例如String,Integer,LocalDate,它们的所有成员变量都是final,多线程同时访问时只能读不能写,这些不变类也是线程安全的。
最后,类似Math这些只提供静态方法,没有成员变量的类,也是线程安全的。
除了上述几种少数情况,大部分类,例如ArrayList,都是非线程安全的类,我们不能在多线程中修改它们。但是,如果所有线程都只读取,不写入,那么ArrayList是可以安全地在线程间共享的。
没有特殊说明时,一个类默认是非线程安全的。
当我们锁住的是this实例时,实际上可以用synchronized修饰这个方法。下面两种写法是等价的:
public void add(int n) {
synchronized(this) { // 锁住this
count += n;
} // 解锁
}
public synchronized void add(int n) { // 锁住this
count += n;
} // 解锁
因此,用synchronized修饰的方法就是同步方法,它表示整个方法都必须用this实例加锁。
如果对一个静态方法添加synchronized修饰符,对static方法添加synchronized,锁住的是该类的Class实例。
synchronized(Counter.class) {
...
}
用synchronized修饰方法可以把整个方法变为同步代码块,synchronized方法加锁对象是this;
通过合理的设计和数据封装可以让一个类变为“线程安全”;
一个类没有特殊说明,默认不是thread-safe;
多线程能否安全访问某个非线程安全的实例,需要具体问题具体分析。
7.死锁
ava的线程锁是可重入的锁。
什么是可重入的锁?
JVM允许同一个线程重复获取同一个锁,这种能被同一个线程反复获取的锁,就叫做可重入锁。
由于Java的线程锁是可重入锁,所以,获取锁的时候,不但要判断是否是第一次获取,还要记录这是第几次获取。每获取一次锁,记录+1,每退出synchronized块,记录-1,减到0的时候,才会真正释放锁。
1.死锁
一个线程可以获取一个锁后,再继续获取另一个锁。例如:
public void add(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value += m;
synchronized(lockB) { // 获得lockB的锁
this.another += m;
} // 释放lockB的锁
} // 释放lockA的锁
}
public void dec(int m) {
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
} // 释放lockA的锁
} // 释放lockB的锁
}
在获取多个锁的时候,不同线程获取多个不同对象的锁可能导致死锁。对于上述代码,线程1和线程2如果分别执行add()和dec()方法时:
- 线程1:进入add(),获得lockA;
- 线程2:进入dec(),获得lockB。
随后:
- 线程1:准备获得lockB,失败,等待中;
- 线程2:准备获得lockA,失败,等待中。
此时,两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。
死锁发生后,没有任何机制能解除死锁,只能强制结束JVM进程。
因此,在编写多线程应用时,要特别注意防止死锁。因为死锁一旦形成,就只能强制结束进程。
那么我们应该如何避免死锁呢?答案是:线程获取锁的顺序要一致。即严格按照先获取lockA,再获取lockB的顺序,改写dec()方法如下:
public void dec(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
} // 释放lockB的锁
} // 释放lockA的锁
}
Java的synchronized锁是可重入锁;
死锁产生的条件是多线程各自持有不同的锁,并互相试图获取对方已持有的锁,导致无限等待;
避免死锁的方法是多线程获取锁的顺序要一致。
8.wait和notify
wait和notify用于多线程协调运行:
- 在synchronized内部可以调用wait()使线程进入等待状态;
- 必须在已获得的锁对象上调用wait()方法;
- 在synchronized内部可以调用notify()或notifyAll()唤醒其他等待线程;
- 必须在已获得的锁对象上调用notify()或notifyAll()方法;
-
9.ReentrantLock
从Java 5开始,引入了一个高级的处理并发的java.util.concurrent包,它提供了大量更高级的并发功能,能大大简化多线程程序的编写。
我们知道Java语言直接提供了synchronized关键字用于加锁,但这种锁一是很重,二是获取时必须一直等待,没有额外的尝试机制。
java.util.concurrent.locks包提供的ReentrantLock用于替代synchronized加锁,我们来看一下传统的synchronized代码:public class Counter {
private int count;
public void add(int n) {
synchronized(this) {
count += n;
}
}
}
如果用ReentrantLock替代,可以把代码改造为:
public class Counter {
private final Lock lock = new ReentrantLock();
private int count;
public void add(int n) {
lock.lock();
try {
count += n;
} finally {
lock.unlock();
}
}
}
因为synchronized是Java语言层面提供的语法,所以我们不需要考虑异常,而ReentrantLock是Java代码实现的锁,我们就必须先获取锁,然后在finally中正确释放锁。
顾名思义,ReentrantLock是可重入锁,它和synchronized一样,一个线程可以多次获取同一个锁。
和synchronized不同的是,ReentrantLock可以尝试获取锁:if (lock.tryLock(1, TimeUnit.SECONDS)) {
try {
...
} finally {
lock.unlock();
}
}
上述代码在尝试获取锁的时候,最多等待1秒。如果1秒后仍未获取到锁,tryLock()返回false,程序就可以做一些额外处理,而不是无限等待下去。
所以,使用ReentrantLock比直接使用synchronized更安全,线程在tryLock()失败的时候不会导致死锁。
ReentrantLock可以替代synchronized进行同步;
ReentrantLock获取锁更安全;
必须先获取到锁,再进入try {…}代码块,最后使用finally保证释放锁;
可以使用tryLock()尝试获取锁。10.Condition
使用ReentrantLock比直接使用synchronized更安全,可以替代synchronized进行线程同步。
但是,synchronized可以配合wait和notify实现线程在条件不满足时等待,条件满足时唤醒,用ReentrantLock我们怎么编写wait和notify的功能呢?
答案是使用Condition对象来实现wait和notify的功能。
我们仍然以TaskQueue为例,把前面用synchronized实现的功能通过ReentrantLock和Condition来实现:class TaskQueue {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private Queue<String> queue = new LinkedList<>();
public void addTask(String s) {
lock.lock();
try {
queue.add(s);
condition.signalAll();
} finally {
lock.unlock();
}
}
public String getTask() {
lock.lock();
try {
while (queue.isEmpty()) {
condition.await();
}
return queue.remove();
} finally {
lock.unlock();
}
}
}
可见,使用Condition时,引用的Condition对象必须从Lock实例的newCondition()返回,这样才能获得一个绑定了Lock实例的Condition实例。
Condition提供的await()、signal()、signalAll()原理和synchronized锁对象的wait()、notify()、notifyAll()是一致的,并且其行为也是一样的: await()会释放当前锁,进入等待状态;
- signal()会唤醒某个等待线程;
- signalAll()会唤醒所有等待线程;
- 唤醒线程从await()返回后需要重新获得锁。
此外,和tryLock()类似,await()可以在等待指定时间后,如果还没有被其他线程通过signal()或signalAll()唤醒,可以自己醒来:
if (condition.await(1, TimeUnit.SECOND)) {
// 被其他线程唤醒
} else {
// 指定时间内没有被其他线程唤醒
}
可见,使用Condition配合Lock,我们可以实现更灵活的线程同步。
Condition可以替代wait和notify;
Condition对象必须从Lock对象获取。
11.ReadWriteLock
允许多个线程同时读,但只要有一个线程在写,其他线程就必须等待:
使用ReadWriteLock可以解决这个问题,它保证:
- 只允许一个线程写入(其他线程既不能写入也不能读取);
- 没有写入时,多个线程允许同时读(提高性能)。
用ReadWriteLock实现这个功能十分容易。我们需要创建一个ReadWriteLock实例,然后分别获取读锁和写锁:
public class Counter {
private final ReadWriteLock rwlock = new ReentrantReadWriteLock();
private final Lock rlock = rwlock.readLock();
private final Lock wlock = rwlock.writeLock();
private int[] counts = new int[10];
public void inc(int index) {
wlock.lock(); // 加写锁
try {
counts[index] += 1;
} finally {
wlock.unlock(); // 释放写锁
}
}
public int[] get() {
rlock.lock(); // 加读锁
try {
return Arrays.copyOf(counts, counts.length);
} finally {
rlock.unlock(); // 释放读锁
}
}
}
把读写操作分别用读锁和写锁来加锁,在读取时,多个线程可以同时获得读锁,这样就大大提高了并发读的执行效率。
使用ReadWriteLock时,适用条件是同一个数据,有大量线程读取,但仅有少数线程修改。
例如,一个论坛的帖子,回复可以看做写入操作,它是不频繁的,但是,浏览可以看做读取操作,是非常频繁的,这种情况就可以使用ReadWriteLock。
使用ReadWriteLock可以提高读取效率:
- ReadWriteLock只允许一个线程写入;
- ReadWriteLock允许多个线程在没有写入时同时读取;
-
12.StampedLock
Java 8引入了新的读写锁:StampedLock。
StampedLock和ReadWriteLock相比,改进之处在于:读的过程中也允许获取写锁后写入!这样一来,我们读的数据就可能不一致,所以,需要一点额外的代码来判断读的过程中是否有写入,这种读锁是一种乐观锁。
乐观锁的意思就是乐观地估计读的过程中大概率不会有写入,因此被称为乐观锁。反过来,悲观锁则是读的过程中拒绝有写入,也就是写入必须等待。显然乐观锁的并发效率更高,但一旦有小概率的写入导致读取的数据不一致,需要能检测出来,再读一遍就行。public class Point {
private final StampedLock stampedLock = new StampedLock();
private double x;
private double y;
public void move(double deltaX, double deltaY) {
long stamp = stampedLock.writeLock(); // 获取写锁
try {
x += deltaX;
y += deltaY;
} finally {
stampedLock.unlockWrite(stamp); // 释放写锁
}
}
public double distanceFromOrigin() {
long stamp = stampedLock.tryOptimisticRead(); // 获得一个乐观读锁
// 注意下面两行代码不是原子操作
// 假设x,y = (100,200)
double currentX = x;
// 此处已读取到x=100,但x,y可能被写线程修改为(300,400)
double currentY = y;
// 此处已读取到y,如果没有写入,读取是正确的(100,200)
// 如果有写入,读取是错误的(100,400)
if (!stampedLock.validate(stamp)) { // 检查乐观读锁后是否有其他写锁发生
stamp = stampedLock.readLock(); // 获取一个悲观读锁
try {
currentX = x;
currentY = y;
} finally {
stampedLock.unlockRead(stamp); // 释放悲观读锁
}
}
return Math.sqrt(currentX * currentX + currentY * currentY);
}
}
和ReadWriteLock相比,写入的加锁是完全一样的,不同的是读取。注意到首先我们通过tryOptimisticRead()获取一个乐观读锁,并返回版本号。接着进行读取,读取完成后,我们通过validate()去验证版本号,如果在读取过程中没有写入,版本号不变,验证成功,我们就可以放心地继续后续操作。如果在读取过程中有写入,版本号会发生变化,验证将失败。在失败的时候,我们再通过获取悲观读锁再次读取。由于写入的概率不高,程序在绝大部分情况下可以通过乐观读锁获取数据,极少数情况下使用悲观读锁获取数据。
可见,StampedLock把读锁细分为乐观读和悲观读,能进一步提升并发效率。但这也是有代价的:一是代码更加复杂,二是StampedLock是不可重入锁,不能在一个线程中反复获取同一个锁。
StampedLock还提供了更复杂的将悲观读锁升级为写锁的功能,它主要使用在if-then-update的场景:即先读,如果读的数据满足条件,就返回,如果读的数据不满足条件,再尝试写。
StampedLock提供了乐观读锁,可取代ReadWriteLock以进一步提升并发性能;
StampedLock是不可重入锁。13.Concurrent集合
通过ReentrantLock和Condition实现了一个BlockingQueue:
public class TaskQueue {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private Queue<String> queue = new LinkedList<>();
public void addTask(String s) {
lock.lock();
try {
queue.add(s);
condition.signalAll();
} finally {
lock.unlock();
}
}
public String getTask() {
lock.lock();
try {
while (queue.isEmpty()) {
condition.await();
}
return queue.remove();
} finally {
lock.unlock();
}
}
}
BlockingQueue的意思就是说,当一个线程调用这个TaskQueue的getTask()方法时,该方法内部可能会让线程变成等待状态,直到队列条件满足不为空,线程被唤醒后,getTask()方法才会返回。
因为BlockingQueue非常有用,所以我们不必自己编写,可以直接使用Java标准库的java.util.concurrent包提供的线程安全的集合:ArrayBlockingQueue。
除了BlockingQueue外,针对List、Map、Set、Deque等,java.util.concurrent包也提供了对应的并发集合类。我们归纳一下:
interface | non-thread-safe | thread-safe |
---|---|---|
List | ArrayList | CopyOnWriteArrayList |
Map | HashMap | ConcurrentHashMap |
Set | HashSet / TreeSet | CopyOnWriteArraySet |
Queue | ArrayDeque / LinkedList | ArrayBlockingQueue / LinkedBlockingQueue |
Deque | ArrayDeque / LinkedList | LinkedBlockingDeque |
使用这些并发集合与使用非线程安全的集合类完全相同。我们以ConcurrentHashMap为例:
Map<String, String> map = new ConcurrentHashMap<>();
// 在不同的线程读写:
map.put("A", "1");
map.put("B", "2");
map.get("A", "1");
因为所有的同步和加锁的逻辑都在集合内部实现,对外部调用者来说,只需要正常按接口引用,其他代码和原来的非线程安全代码完全一样。即当我们需要多线程访问时,把:
Map<String, String> map = new HashMap<>();
改为:
Map<String, String> map = new ConcurrentHashMap<>();
使用java.util.concurrent包提供的线程安全的并发集合可以大大简化多线程编程:
多线程同时读写并发集合是安全的;
尽量使用Java标准库提供的并发集合,避免自己编写同步代码。
14.Atomic
Java的java.util.concurrent包除了提供底层锁、并发集合外,还提供了一组原子操作的封装类,它们位于java.util.concurrent.atomic包。
我们以AtomicInteger为例,它提供的主要操作有:
- 增加值并返回新值:int addAndGet(int delta)
- 加1后返回新值:int incrementAndGet()
- 获取当前值:int get()
- 用CAS方式设置:int compareAndSet(int expect, int update)
Atomic类是通过无锁(lock-free)的方式实现的线程安全(thread-safe)访问。它的主要原理是利用了CAS:Compare and Set。
如果我们自己通过CAS编写incrementAndGet(),它大概长这样:
public int incrementAndGet(AtomicInteger var) {
int prev, next;
do {
prev = var.get();
next = prev + 1;
} while ( ! var.compareAndSet(prev, next));
return next;
}
CAS是指,在这个操作中,如果AtomicInteger的当前值是prev,那么就更新为next,返回true。如果AtomicInteger的当前值不是prev,就什么也不干,返回false。通过CAS操作并配合do … while循环,即使其他线程修改了AtomicInteger的值,最终的结果也是正确的。
使用java.util.concurrent.atomic提供的原子操作可以简化多线程编程:
- 原子操作实现了无锁的线程安全;
-
15.线程池
那么我们就可以把很多小任务让一组线程来执行,而不是一个任务对应一个新线程。这种能接收大量小任务并进行分发处理的就是线程池。
简单地说,线程池内部维护了若干个线程,没有任务的时候,这些线程都处于等待状态。如果有新任务,就分配一个空闲线程执行。如果所有线程都处于忙碌状态,新任务要么放入队列等待,要么增加一个新线程进行处理。
Java标准库提供了ExecutorService接口表示线程池,它的典型用法如下:// 创建固定大小的线程池:
ExecutorService executor = Executors.newFixedThreadPool(3);
// 提交任务:
executor.submit(task1);
executor.submit(task2);
executor.submit(task3);
executor.submit(task4);
executor.submit(task5);
因为ExecutorService只是接口,Java标准库提供的几个常用实现类有:
FixedThreadPool:线程数固定的线程池;
- CachedThreadPool:线程数根据任务动态调整的线程池;
- SingleThreadExecutor:仅单线程执行的线程池。
想创建指定动态范围的线程池,可以这么写:
int min = 4;
int max = 10;
ExecutorService es = new ThreadPoolExecutor(min, max,
60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());
1.ScheduledThreadPool
还有一种任务,需要定期反复执行,例如,每秒刷新证券价格。这种任务本身固定,需要反复执行的,可以使用ScheduledThreadPool。放入ScheduledThreadPool的任务可以定期反复执行。
创建一个ScheduledThreadPool仍然是通过Executors类:
ScheduledExecutorService ses = Executors.newScheduledThreadPool(4);
我们可以提交一次性任务,它会在指定延迟后只执行一次:
// 1秒后执行一次性任务:
ses.schedule(new Task("one-time"), 1, TimeUnit.SECONDS);
如果任务以固定的每3秒执行,我们可以这样写:
// 2秒后开始执行定时任务,每3秒执行:
ses.scheduleAtFixedRate(new Task("fixed-rate"), 2, 3, TimeUnit.SECONDS);
如果任务以固定的3秒为间隔执行,我们可以这样写:
// 2秒后开始执行定时任务,以3秒为间隔执行:
ses.scheduleWithFixedDelay(new Task("fixed-delay"), 2, 3, TimeUnit.SECONDS);
JDK提供了ExecutorService实现了线程池功能:
- 线程池内部维护一组线程,可以高效执行大量小任务;
- Executors提供了静态方法创建不同类型的ExecutorService;
- 必须调用shutdown()关闭ExecutorService;
ScheduledThreadPool可以定期调度多个任务。
16.Future
Java标准库还提供了一个Callable接口,和Runnable接口比,它多了一个返回值:
class Task implements Callable<String> {
public String call() throws Exception {
return longTimeCalculation();
}
}
并且Callable接口是一个泛型接口,可以返回指定类型的结果。
一个Future类型的实例代表一个未来能获取结果的对象。
一个Future接口表示一个未来可能会返回的结果,它定义的方法有: get():获取结果(可能会等待)
- get(long timeout, TimeUnit unit):获取结果,但只等待指定的时间;
- cancel(boolean mayInterruptIfRunning):取消当前任务;
- isDone():判断任务是否已完成。
对线程池提交一个Callable任务,可以获得一个Future对象;
可以用Future在将来某个时刻获取结果。
17.CompletableFuture
CompletableFuture可以指定异步处理流程:
- thenAccept()处理正常结果;
- exceptional()处理异常结果;
- thenApplyAsync()用于串行化另一个CompletableFuture;
- anyOf()和allOf()用于并行化多个CompletableFuture。
18.ForkJoin
Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行。
Fork/Join任务的原理:判断一个任务是否足够小,如果是,直接计算,否则,就分拆成几个小任务分别计算。这个过程可以反复“裂变”成一系列小任务。
Fork/Join是一种基于“分治”的算法:通过分解任务,并行执行,最后合并结果得到最终结果。
ForkJoinPool线程池可以把一个大任务分拆成小任务并行执行,任务类必须继承自RecursiveTask或RecursiveAction。
使用Fork/Join模式可以进行并行计算以提高效率。19.ThreadLocal
这种在一个线程中,横跨若干方法调用,需要传递的对象,我们通常称之为上下文(Context),它是一种状态,可以是用户身份、任务信息等。
Java标准库提供了一个特殊的ThreadLocal,它可以在一个线程中传递同一个对象。
ThreadLocal实例通常总是以静态字段初始化如下:
它的典型使用方式如下:static ThreadLocal<User> threadLocalUser = new ThreadLocal<>();
通过设置一个User实例关联到ThreadLocal中,在移除之前,所有方法都可以随时获取到该User实例: ```java void step1() { User u = threadLocalUser.get(); log(); printUser(); }void processUser(user) {
try {
threadLocalUser.set(user);
step1();
step2();
} finally {
threadLocalUser.remove();
}
}
void log() { User u = threadLocalUser.get(); println(u.name); }
void step2() { User u = threadLocalUser.get(); checkUser(u.id); }
注意到普通的方法调用一定是同一个线程执行的,所以,step1()、step2()以及log()方法内,threadLocalUser.get()获取的User对象是同一个实例。<br />实际上,可以把ThreadLocal看成一个全局Map<Thread, Object>:每个线程获取ThreadLocal变量时,总是使用Thread自身作为key:
```java
Object threadLocalValue = threadLocalMap.get(Thread.currentThread());
因此,ThreadLocal相当于给每个线程都开辟了一个独立的存储空间,各个线程的ThreadLocal关联的实例互不干扰。
最后,特别注意ThreadLocal一定要在finally中清除:
try {
threadLocalUser.set(user);
...
} finally {
threadLocalUser.remove();
}
这是因为当前线程执行完相关代码后,很可能会被重新放入线程池中,如果ThreadLocal没有被清除,该线程执行其他代码时,会把上一次的状态带进去。
为了保证能释放ThreadLocal关联的实例,我们可以通过AutoCloseable接口配合try (resource) {…}结构,让编译器自动为我们关闭。例如,一个保存了当前用户名的ThreadLocal可以封装为一个UserContext对象:
public class UserContext implements AutoCloseable {
static final ThreadLocal<String> ctx = new ThreadLocal<>();
public UserContext(String user) {
ctx.set(user);
}
public static String currentUser() {
return ctx.get();
}
@Override
public void close() {
ctx.remove();
}
}
使用的时候,我们借助try (resource) {…}结构,可以这么写:
try (var ctx = new UserContext("Bob")) {
// 可任意调用UserContext.currentUser():
String currentUser = UserContext.currentUser();
} // 在此自动调用UserContext.close()方法释放ThreadLocal关联对象
这样就在UserContext中完全封装了ThreadLocal,外部代码在try (resource) {…}内部可以随时调用UserContext.currentUser()获取当前线程绑定的用户名。
ThreadLocal表示线程的“局部变量”,它确保每个线程的ThreadLocal变量都是各自独立的;
ThreadLocal适合在一个线程的处理流程中保持上下文(避免了同一参数在所有方法中传递);
使用ThreadLocal要用try … finally结构,并在finally中清除。