library(tidyfst)#tidyfst的函数能够处理所有数据框,最后输出一个data.table# 选择单列iris %>% select_dt(Sepal.Length)# 选择多列iris %>% select_dt(Sepal.Length,Sepal.Width)#select_dt在接受一个字符型的时候,就会识别为正则表达式iris %>% select_dt("^Se")iris %>% select_dt("Length$")iris %>% select_dt("Se|Pe")#如果你想选择的,恰恰是正则的补集,而其补集不好写正则,直接加减号即可,也可以加感叹号iris %>% select_dt(-"^Se")iris %>% select_dt(!"^Se")iris %>% select_dt(Sepal.Length:Petal.Length)#在一些循环中相当有用iris %>% select_dt(cols = names(iris)[3])iris %>% select_dt(1:3)iris %>% select_dt(1,3)iris %>% select_dt(-(1:3))iris %>% select_dt(-1,-3)#根据列的类型选择列# 只选择因子变量iris %>% select_dt(is.factor)iris %>% select_dt(-is.factor)#对于需求比较复杂的需求,可以用超级选择函数iris %>% select_mix(is.factor,1:3)