定型数组(typed array)是 ECMAScript 新增的结构,目的是提升向原生库传输数据的效率。实际上, JavaScript 并没有“TypedArray”类型,它所指的其实是一种特殊的包含数值类型的数组。
一、ArrayBuffer
Float32Array 实际上是一种“视图”,可以允许 JavaScript 运行时访问一块名为 ArrayBuffer 的 预分配内存。ArrayBuffer 是所有定型数组及视图引用的基本单位。
ArrayBuffer()是一个普通的 JavaScript 构造函数,可用于在内存中分配特定数量的字节空间。
const buf = new ArrayBuffer(16); // 在内存中分配 16 字节
alert(buf.byteLength); // 16
ArrayBuffer 一经创建就不能再调整大小。不过,可以使用 slice()复制其全部或部分到一个新
实例中:
const buf1 = new ArrayBuffer(16);
const buf2 = buf1.slice(4, 12);
alert(buf2.byteLength); // 8
ArrayBuffer()的特点
1、ArrayBuffer 在分配失败时会抛出错误。
2、ArrayBuffer分配的内存不能超过 Number.MAX_SAFE_INTEGER(253 1)字节。
3、声明 ArrayBuffer 则会将所有二进制位初始化为 0。
4、而通过声明ArrayBuffer 分配的堆内存可以被当成垃圾回收,不用手动释放。
tips:不能仅通过对 ArrayBuffer 的引用就读取或写入其内容。要读取或写入 ArrayBuffer,
就必须通过视图。视图有不同的类型,但引用的都是 ArrayBuffer 中存储的二进制数据。
二、 DataView
第一种允许你读写 ArrayBuffer 的视图是 DataView。这个视图专为文件 I/O 和网络 I/O 设计,其 API 支持对缓冲数据的高度控制,但相比于其他类型的视图性能也差一些。DataView 对缓冲内容没有 任何预设,也不能迭代。
必须在对已有的 ArrayBuffer 读取或写入时才能创建 DataView 实例。这个实例可以使用全部或 部分 ArrayBuffer,且维护着对该缓冲实例的引用,以及视图在缓冲中开始的位置。
const buf = new ArrayBuffer(16);
// DataView 默认使用整个 ArrayBuffer
const fullDataView = new DataView(buf);
alert(fullDataView.byteOffset); // 0
alert(fullDataView.byteLength); // 16
alert(fullDataView.buffer === buf); // true
// 构造函数接收一个可选的字节偏移量和字节长度
// byteOffset=0 表示视图从缓冲起点开始
// byteLength=8 限制视图为前 8 个字节
const firstHalfDataView = new DataView(buf, 0, 8);
alert(firstHalfDataView.byteOffset); // 0
alert(firstHalfDataView.byteLength); // 8
alert(firstHalfDataView.buffer === buf); // true
// 如果不指定,则 DataView 会使用剩余的缓冲
// byteOffset=8 表示视图从缓冲的第 9 个字节开始
// byteLength 未指定,默认为剩余缓冲
const secondHalfDataView = new DataView(buf, 8);
alert(secondHalfDataView.byteOffset); // 8
alert(secondHalfDataView.byteLength); // 8
alert(secondHalfDataView.buffer === buf); // true
要通过 DataView 读取缓冲,还需要几个组件。
首先是要读或写的字节偏移量。可以看成 DataView 中的某种“地址”。
DataView 应该使用 ElementType 来实现 JavaScript 的 Number 类型到缓冲内二进制格式的转
换。
最后是内存中值的字节序。默认为大端字节序。
三、ElementType
ECMAScript 6 支持 8 种不同的 ElementType(见下表)。 <br />![elementtype.png](https://cdn.nlark.com/yuque/0/2021/png/21610487/1634128607945-0ff83e11-d959-49f3-9549-3e6c9d55594a.png#clientId=ud14b200c-56c5-4&from=ui&id=uf81537db&margin=%5Bobject%20Object%5D&name=elementtype.png&originHeight=423&originWidth=1318&originalType=binary&ratio=1&size=136718&status=done&style=none&taskId=u306e87bc-0b69-4424-aaa5-b5620e49f80)<br /> DataView 为上表中的每种类型都暴露了 get 和 set 方法,这些方法使用 byteOffset(字节偏移 量)定位要读取或写入值的位置。类型是可以互换使用的,如下例所示:
// 在内存中分配两个字节并声明一个 DataView
const buf = new ArrayBuffer(2);
const view = new DataView(buf);
// 说明整个缓冲确实所有二进制位都是 0
// 检查第一个和第二个字符
alert(view.getInt8(0)); // 0
alert(view.getInt8(1)); // 0
// 检查整个缓冲
alert(view.getInt16(0)); // 0
// 将整个缓冲都设置为 1
// 255 的二进制表示是 11111111(2^8 - 1)
view.setUint8(0, 255);
// DataView 会自动将数据转换为特定的 ElementType
// 255 的十六进制表示是 0xFF
view.setUint8(1, 0xFF);
// 现在,缓冲里都是 1 了
// 如果把它当成二补数的有符号整数,则应该是-1
alert(view.getInt16(0)); // -1
四、 字节序
“字节序”指的是计算系统维护的一种字节顺序的约 定。DataView 只支持两种约定:大端字节序和小端字节序。大端字节序也称为“网络字节序”,意思 是最高有效位保存在第一个字节,而最低有效位保存在最后一个字节。小端字节序正好相反,即最低有 效位保存在第一个字节,最高有效位保存在最后一个字节。
DataView 的所 有 API 方法都以大端字节序作为默认值,但接收一个可选的布尔值参数,设置为 true 即可启用小端 字节序。
// 在内存中分配两个字节并声明一个 DataView
const buf = new ArrayBuffer(2);
const view = new DataView(buf);
// 填充缓冲,让第一位和最后一位都是 1
view.setUint8(0, 0x80); // 设置最左边的位等于 1
view.setUint8(1, 0x01); // 设置最右边的位等于 1
// 缓冲内容(为方便阅读,人为加了空格)
// 0x8 0x0 0x0 0x1
// 1000 0000 0000 0001
// 按大端字节序读取 Uint16
// 0x80 是高字节,0x01 是低字节
// 0x8001 = 2^15 + 2^0 = 32768 + 1 = 32769
alert(view.getUint16(0)); // 32769
// 按小端字节序读取 Uint16
// 0x01 是高字节,0x80 是低字节
// 0x0180 = 2^8 + 2^7 = 256 + 128 = 384
alert(view.getUint16(0, true)); // 384
// 按大端字节序写入 Uint16
view.setUint16(0, 0x0004);
// 缓冲内容(为方便阅读,人为加了空格)
// 0x0 0x0 0x0 0x4
// 0000 0000 0000 0100
alert(view.getUint8(0)); // 0
alert(view.getUint8(1)); // 4
// 按小端字节序写入 Uint16
view.setUint16(0, 0x0002, true);
// 缓冲内容(为方便阅读,人为加了空格)
// 0x0 0x2 0x0 0x0
// 0000 0010 0000 0000
alert(view.getUint8(0)); // 2
alert(view.getUint8(1)); // 0