线性代数的本质是3b1b在bilibili上传的系列视频,通过python绘图将线性代数的矩阵计算可视化展现,并用“变换”这一概念理解线性代数。对于图形学和技术美术而言,理解线性代数的几何直观是非常重要的。
一 什么是向量
1.1 三种视角
- 数学-日常向量的表现形式
- 计算机-二元数组的表现形式-上为x轴,下为y轴
- 物理专业-带有长度和方向的矢量
1.2 概念理解
一个数组如何理解:例如:在平面直角坐标系中,其含义就是从原点出发,顺x轴(第一个轴)移动a个单位,再顺y轴(第二个轴)移动b个单位。关于这两种说法的差别,要回到高中时期的田媛小课堂,i^ 和 j^ 的问题。(读作i hat 和 j hat,在后文中用i,j表示)所谓的i和j,本质上就是空间/平面中的坐标轴,在这两条坐标轴确定的空间中构建其他的向量和函数。
向量加法的图像合理性:将向量看作某种特定的运动,一个点从零点沿着其中一个向量移动到终点,再沿第二个向量移动。这是数轴加法的拓展。相对而言,数组形式的向量加法就是%22%20aria-hidden%3D%22true%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%220%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-62%22%20x%3D%2250%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%221381%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%222132%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(3132%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%2245%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-64%22%20x%3D%220%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%221375%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%225314%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(6371%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(0%2C650)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%22751%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%221752%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(5%2C-750)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-62%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%22651%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-64%22%20x%3D%221652%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%223037%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%5Cbegin%7Bbmatrix%7D%20%0A%20a%20%5C%5C%20b%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%20%0A%20c%20%5C%5C%20d%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%20%0A%20a%2Bc%20%5C%5C%20b%2Bd%0A%5Cend%7Bbmatrix%7D&id=ulotb)。
向量乘法的图像特征:由于向量是带有方向和大小的量,因此带有负数标量(Scalars)的乘法会将之反向。几何上称之为“缩放”/“Scaling”。
二 线性相关、张成空间与基
2.1 向量坐标的另一个视角
2.2 基向量
i 和 j 是xy坐标系的“基向量”,他们合起来称为坐标系的基。也就是说,当我们将坐标看作标量时,基向量就是这些标量缩放的对象。当我们使用数字描述向量时,它都依赖于我们正在使用的基。
2.3 线性组合
两个数乘向量的和被成为这两个向量的线性组合,如:。视觉上可以被理解为:当固定某个标量,使另一个标量在实数范围内移动,则形成一条直线;当两个向量共线时,产生向量的终点在一条过原点的直线上。
2.4 张成的空间
定义:某两个向量的线性组合的向量之集合被称之为这两个向量张成的空间。
2.5 关于三维空间
两个三维向量:两个三维向量张成的空间是什么样的?一个过原点的平面。三个三维向量:当我们缩放第三个向量时,它将前两个向量张成的平面沿它的方向来回移动,从而扫过整个空间。
2.6 线性相关
定义:当第三个向量已经落在前两个向量张成的空间中(或者更低维度),而没有对张成空间做出任何贡献时,我们称它们线性相关。
三 矩阵与线性变换
3.1 线性变换的图像依据
对线性变换的直观理解。变换,变换的本质是运动,即一个向量移动到另一个向量的位置。线性,原点不动,并保持网格线平行且等距分布的变换。
线性变换的逻辑:一个向量是两个基向量的线性组合,当发生线性变换的时候,两个基向量发生同样的变换。此时,变换后的新向量就是变换后的基向量的线性组合,且两个标量与变换前相同。当原向量和变换方式已知,只需要知道变换方式,就存在以下式:
事实上,在平面中描述一个线性变化只需要一个22的矩阵(“2x2 Matrix”),第一列是变换后的i,第二列是变换后的*j。而计算方法很简单,思想如上。对于不管几维的矩阵都可以这样想,在这里思想是确定的。下面说一些特殊的矩阵
逆时针旋转90°
剪切 本质上就是将(0,1)变换到(1,1) 然后x轴基不动。
四 矩阵乘法和线性变换复合
4.1 复合变换的几何意义
定义:先变换A矩阵,再变换B矩阵,称之为A和B矩阵的复合变换。
原理思考:我们可以定义一个C矩阵,用于描述先A再B的复合变换。本质上就是这句话;“新矩阵捕捉到了先A后B的相同的总体效应。”
注意: 矩阵乘法的本质意义是变换的顺序,因此当两个矩阵相乘的时候,需要从右往左读(因为g(f(x))是从左往右的,而右边的是先执行的内层函数)。
4.2 矩阵乘法
将右边的矩阵理解为变换完成的原向量即可,但请无比从右往左算,如下列式子:(“/”是自创符号,分割2x2矩阵的左右两列)
%22%20aria-hidden%3D%22true%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%220%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%2248%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1519%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-62%22%20x%3D%2247%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-64%22%20x%3D%220%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%222905%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(3600%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-65%22%20x%3D%227%22%20y%3D%22656%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%20x%3D%220%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1470%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%20x%3D%2213%22%20y%3D%22656%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%20x%3D%220%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%222909%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%5Cbegin%7Bbmatrix%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7De%26f%5C%5Cg%26h%5C%5C%5Cend%7Bbmatrix%7D%0A&id=se0Hq)
%22%20aria-hidden%3D%22true%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-65%22%20x%3D%221056%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(1689%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%220%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%2248%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%221381%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%223821%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%20x%3D%224822%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(5469%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-62%22%20x%3D%2247%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-64%22%20x%3D%220%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%221375%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2F%22%20x%3D%227540%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%20x%3D%228040%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(8757%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%220%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%2248%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%221381%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2210890%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%20x%3D%2211890%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(12634%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5B%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(695%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-62%22%20x%3D%2247%22%20y%3D%22650%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-64%22%20x%3D%220%22%20y%3D%22-750%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ3-5D%22%20x%3D%221375%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%3De%5Cbegin%7Bbmatrix%7Da%5C%5Cc%5C%5C%5Cend%7Bbmatrix%7D%0A%2Bg%5Cbegin%7Bbmatrix%7Db%5C%5Cd%5C%5C%5Cend%7Bbmatrix%7D%0A%2Ff%5Cbegin%7Bbmatrix%7Da%5C%5Cc%5C%5C%5Cend%7Bbmatrix%7D%0A%2Bh%5Cbegin%7Bbmatrix%7Db%5C%5Cd%5C%5C%5Cend%7Bbmatrix%7D&id=uey7i)
由于这种连续变换的性质,先变换的矩阵在函数层级的内部,写在矩阵乘法的右边,优先计算。事实上,如有矩阵ABC,那么:
解释一下:矩阵乘法这个东西就是从右往左做的, 结合律就是没有影响…
4.3 三维空间中的线性变换
向量*矩阵,跟二维平面上的一样,如下:
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20transform%3D%22translate(0%2C2156)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A1%22%20x%3D%220%22%20y%3D%22-1155%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-2060.4867549668875)%20scale(1%2C0.5132450331125827)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A2%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A3%22%20x%3D%220%22%20y%3D%22-3167%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(834%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%220%22%20y%3D%221356%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-64%22%20x%3D%223%22%20y%3D%22-44%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%20x%3D%2224%22%20y%3D%22-1450%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1519%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-62%22%20x%3D%2273%22%20y%3D%221356%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-65%22%20x%3D%2255%22%20y%3D%22-44%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%20x%3D%220%22%20y%3D%22-1450%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(3095%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%2258%22%20y%3D%221356%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%20x%3D%220%22%20y%3D%22-44%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%22102%22%20y%3D%22-1450%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(4647%2C2156)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A4%22%20x%3D%220%22%20y%3D%22-1155%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-2060.4867549668875)%20scale(1%2C0.5132450331125827)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A5%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A6%22%20x%3D%220%22%20y%3D%22-3167%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(5481%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(0%2C2153)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A1%22%20x%3D%220%22%20y%3D%22-1155%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-2054.4966887417218)%20scale(1%2C0.5033112582781457)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A2%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A3%22%20x%3D%220%22%20y%3D%22-3161%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(834%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%20x%3D%220%22%20y%3D%221353%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%20x%3D%2237%22%20y%3D%22-47%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-7A%22%20x%3D%2252%22%20y%3D%22-1453%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1563%2C2153)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A4%22%20x%3D%220%22%20y%3D%22-1155%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-2054.4966887417218)%20scale(1%2C0.5033112582781457)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A5%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A6%22%20x%3D%220%22%20y%3D%22-3161%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%5Cbegin%7Bbmatrix%7Da%26b%26c%5C%5Cd%26e%26f%5C%5Cg%26h%26i%5C%5C%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7Dx%5C%5Cy%5C%5Cz%5C%5C%5Cend%7Bbmatrix%7D%0A&id=jLJ5J)
矩阵*矩阵,本质上就是将之分解成向量*矩阵进行计算,不再提了。
五 行列式
5.1 概念
2D场景中
定义 行列式描述了在线性变换前后两个基向量围成的平行四边形面积的变化倍率。若两个基向量围成平行四边形的面积为A,在变换之后矩阵为,平行四边形面积为,线性变换的行列式写作
当行列式=0的时候,表明这个图形被压缩到一个更低维度的图形中——在2D场景中的线性相关的充要条件就是行列式等于0。
当行列式<0的时候,空间定向会发生翻转,在图像上与将坐标轴翻转等同。事实上从向量夹角的角度理解,i-hat和j-hat的夹角从正数到逐渐减小到0,再减小到负数区域(类比正弦函数)。
3D场景中
定义 线性变换前后三个基向量围成的平行六面体的体积的变化倍率。
当行列式=0的时候,整个空间被压缩为零体积模型(平面或直线)在这一条件下,矩阵的三个基向量线性相关。
当行列式<0的时候,判断方式如下:变换前使用右手定则,右手食指i-hat,中指j-hat,拇指k-hat;若变换后只能使用左手定则,即左手食指i-hat,中指j-hat,拇指k-hat,其行列式<0。**在几何上相当于把立方体的内部翻到外部**。
5.2 用矩阵计算行列式
2D场景中:
3D场景中:
2D的场景我能理解,但是这个逻辑能否推广到三维空间中?以及这些东西为什么存在这样的计算?
5.3 QuizTime
看以下式子:,由于行列式实际上表示线性变换前后面积的变换倍率,因此变换倍率的乘积和线性变换后在计算面积变换率本质上没有差别。
六 逆矩阵、列空间与零空间
6.0 什么?
6.1 计算线性方程组
让我们来看一个相对简单的线性方程组:对于这个方程组,存在两种可能性,,此时空间并未挤压为0面积的区域,有且仅有一个向量在变换后会与v重合,我们可以通过逆向变换来找到这个向量——
事实上,这是一个什么都不做的变换。那么我该怎么求得呢?无论在2维平面还是在3维空间,只要矩阵的行列式不等于0,那么向量变换就存在唯一解,就能够用这种做法。
如果存在矩阵行列式等于0,见6.2
6.2 秩
定义:指变换后空间的维数。如果变换后的向量落在某个二维平面上,那么这个变换的秩为2;如果变换后的向量落在一个数轴上,那么这个变换的秩为1。
满秩:秩与列数相等。对于满秩变化而言,原点不变;但对于那些非满秩的变化而言,要么有体积被压缩成的平面,要么存在一个面被压缩到了一条直线。
6.3 列空间
列空间就是基向量在变化后张成的空间(所有可能性的集合),而更精确的秩的定义是列空间的维数。
6.4 零空间
6.5 非方阵【没懂】
有待补充
定义
输入输出空间不同的矩阵称为非方阵,比如3x2的矩阵虽然只有两个向量,但是其几何意义是存在于三维空间中的。
七 点积与对偶性
7.1 高中时期的向量点积
高中时期的向量点积有两种计算方式,如已知向量 ,如已知两个向量 的坐标,则有: 那么为什么这两种计算方式是一样的?
7.2 对偶性
一句话:这个部分在几何直观上证明了1x2矩阵作为线性变换和一个2x1矩阵作为向量的同一性。
这个视频中还有很多值得思考的事情,建议再好好看看视频。
八 叉积的标准介绍
8.1 定义
引子: 围成的平行四边形的面积(这真的不是行列式吗)两个向量的顺序和最后的结果的正负性有关,当在右侧时,叉积的值为正数;当在左侧时,叉积的值为负数。
真正的叉积:通过两个三维向量生成一个新的三维向量。
定义:但事实上,叉积的结果是一个向量。这个向量的长度是变换后的行列式绝对值,方向垂直于这个平面,遵守右手定则(若叉积的结果是 ,食指指向,中指指向,拇指指向)
8.2 计算方式
设定一个2x2的矩阵M,将作为第一列,将作为第二列,然后将这个矩阵求行列式得出面积,最后根据两个向量的位置判断叉积的正负性。
正式的叉积计算方式如下:
%20-%0Aj(v_1%20w_3%20-%20v_3%20w_1)%20%2B%0Ak(v_1%20w_2%20-%20v_2%20w_1)%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-70%22%20d%3D%22M23%20287Q24%20290%2025%20295T30%20317T40%20348T55%20381T75%20411T101%20433T134%20442Q209%20442%20230%20378L240%20387Q302%20442%20358%20442Q423%20442%20460%20395T497%20281Q497%20173%20421%2082T249%20-10Q227%20-10%20210%20-4Q199%201%20187%2011T168%2028L161%2036Q160%2035%20139%20-51T118%20-138Q118%20-144%20126%20-145T163%20-148H188Q194%20-155%20194%20-157T191%20-175Q188%20-187%20185%20-190T172%20-194Q170%20-194%20161%20-194T127%20-193T65%20-192Q-5%20-192%20-24%20-194H-32Q-39%20-187%20-39%20-183Q-37%20-156%20-26%20-148H-6Q28%20-147%2033%20-136Q36%20-130%2094%20103T155%20350Q156%20355%20156%20364Q156%20405%20131%20405Q109%20405%2094%20377T71%20316T59%20280Q57%20278%2043%20278H29Q23%20284%2023%20287ZM178%20102Q200%2026%20252%2026Q282%2026%20310%2049T356%20107Q374%20141%20392%20215T411%20325V331Q411%20405%20350%20405Q339%20405%20328%20402T306%20393T286%20380T269%20365T254%20350T243%20336T235%20326L232%20322Q232%20321%20229%20308T218%20264T204%20212Q178%20106%20178%20102Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-20D7%22%20d%3D%22M-123%20694Q-123%20702%20-118%20708T-103%20714Q-93%20714%20-88%20706T-80%20687T-67%20660T-40%20633Q-29%20626%20-29%20615Q-29%20606%20-36%20600T-53%20590T-83%20571T-121%20531Q-135%20516%20-143%20516T-157%20522T-163%20536T-152%20559T-129%20584T-116%20595H-287L-458%20596Q-459%20597%20-461%20599T-466%20602T-469%20607T-471%20615Q-471%20622%20-458%20635H-99Q-123%20673%20-123%20694Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-3D%22%20d%3D%22M56%20347Q56%20360%2070%20367H707Q722%20359%20722%20347Q722%20336%20708%20328L390%20327H72Q56%20332%2056%20347ZM56%20153Q56%20168%2072%20173H708Q722%20163%20722%20153Q722%20140%20707%20133H70Q56%20140%2056%20153Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-76%22%20d%3D%22M173%20380Q173%20405%20154%20405Q130%20405%20104%20376T61%20287Q60%20286%2059%20284T58%20281T56%20279T53%20278T49%20278T41%20278H27Q21%20284%2021%20287Q21%20294%2029%20316T53%20368T97%20419T160%20441Q202%20441%20225%20417T249%20361Q249%20344%20246%20335Q246%20329%20231%20291T200%20202T182%20113Q182%2086%20187%2069Q200%2026%20250%2026Q287%2026%20319%2060T369%20139T398%20222T409%20277Q409%20300%20401%20317T383%20343T365%20361T357%20383Q357%20405%20376%20424T417%20443Q436%20443%20451%20425T467%20367Q467%20340%20455%20284T418%20159T347%2040T241%20-11Q177%20-11%20139%2022Q102%2054%20102%20117Q102%20148%20110%20181T151%20298Q173%20362%20173%20380Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-D7%22%20d%3D%22M630%2029Q630%209%20609%209Q604%209%20587%2025T493%20118L389%20222L284%20117Q178%2013%20175%2011Q171%209%20168%209Q160%209%20154%2015T147%2029Q147%2036%20161%2051T255%20146L359%20250L255%20354Q174%20435%20161%20449T147%20471Q147%20480%20153%20485T168%20490Q173%20490%20175%20489Q178%20487%20284%20383L389%20278L493%20382Q570%20459%20587%20475T609%20491Q630%20491%20630%20471Q630%20464%20620%20453T522%20355L418%20250L522%20145Q606%2061%20618%2048T630%2029Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-77%22%20d%3D%22M580%20385Q580%20406%20599%20424T641%20443Q659%20443%20674%20425T690%20368Q690%20339%20671%20253Q656%20197%20644%20161T609%2080T554%2012T482%20-11Q438%20-11%20404%205T355%2048Q354%2047%20352%2044Q311%20-11%20252%20-11Q226%20-11%20202%20-5T155%2014T118%2053T104%20116Q104%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Q21%20293%2029%20315T52%20366T96%20418T161%20441Q204%20441%20227%20416T250%20358Q250%20340%20217%20250T184%20111Q184%2065%20205%2046T258%2026Q301%2026%20334%2087L339%2096V119Q339%20122%20339%20128T340%20136T341%20143T342%20152T345%20165T348%20182T354%20206T362%20238T373%20281Q402%20395%20406%20404Q419%20431%20449%20431Q468%20431%20475%20421T483%20402Q483%20389%20454%20274T422%20142Q420%20131%20420%20107V100Q420%2085%20423%2071T442%2042T487%2026Q558%2026%20600%20148Q609%20171%20620%20213T632%20273Q632%20306%20619%20325T593%20357T580%20385Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-5B%22%20d%3D%22M118%20-250V750H255V710H158V-210H255V-250H118Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-69%22%20d%3D%22M184%20600Q184%20624%20203%20642T247%20661Q265%20661%20277%20649T290%20619Q290%20596%20270%20577T226%20557Q211%20557%20198%20567T184%20600ZM21%20287Q21%20295%2030%20318T54%20369T98%20420T158%20442Q197%20442%20223%20419T250%20357Q250%20340%20236%20301T196%20196T154%2083Q149%2061%20149%2051Q149%2026%20166%2026Q175%2026%20185%2029T208%2043T235%2078T260%20137Q263%20149%20265%20151T282%20153Q302%20153%20302%20143Q302%20135%20293%20112T268%2061T223%2011T161%20-11Q129%20-11%20102%2010T74%2074Q74%2091%2079%20106T122%20220Q160%20321%20166%20341T173%20380Q173%20404%20156%20404H154Q124%20404%2099%20371T61%20287Q60%20286%2059%20284T58%20281T56%20279T53%20278T49%20278T41%20278H27Q21%20284%2021%20287Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-31%22%20d%3D%22M213%20578L200%20573Q186%20568%20160%20563T102%20556H83V602H102Q149%20604%20189%20617T245%20641T273%20663Q275%20666%20285%20666Q294%20666%20302%20660V361L303%2061Q310%2054%20315%2052T339%2048T401%2046H427V0H416Q395%203%20257%203Q121%203%20100%200H88V46H114Q136%2046%20152%2046T177%2047T193%2050T201%2052T207%2057T213%2061V578Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-6A%22%20d%3D%22M297%20596Q297%20627%20318%20644T361%20661Q378%20661%20389%20651T403%20623Q403%20595%20384%20576T340%20557Q322%20557%20310%20567T297%20596ZM288%20376Q288%20405%20262%20405Q240%20405%20220%20393T185%20362T161%20325T144%20293L137%20279Q135%20278%20121%20278H107Q101%20284%20101%20286T105%20299Q126%20348%20164%20391T252%20441Q253%20441%20260%20441T272%20442Q296%20441%20316%20432Q341%20418%20354%20401T367%20348V332L318%20133Q267%20-67%20264%20-75Q246%20-125%20194%20-164T75%20-204Q25%20-204%207%20-183T-12%20-137Q-12%20-110%207%20-91T53%20-71Q70%20-71%2082%20-81T95%20-112Q95%20-148%2063%20-167Q69%20-168%2077%20-168Q111%20-168%20139%20-140T182%20-74L193%20-32Q204%2011%20219%2072T251%20197T278%20308T289%20365Q289%20372%20288%20376Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-32%22%20d%3D%22M109%20429Q82%20429%2066%20447T50%20491Q50%20562%20103%20614T235%20666Q326%20666%20387%20610T449%20465Q449%20422%20429%20383T381%20315T301%20241Q265%20210%20201%20149L142%2093L218%2092Q375%2092%20385%2097Q392%2099%20409%20186V189H449V186Q448%20183%20436%2095T421%203V0H50V19V31Q50%2038%2056%2046T86%2081Q115%20113%20136%20137Q145%20147%20170%20174T204%20211T233%20244T261%20278T284%20308T305%20340T320%20369T333%20401T340%20431T343%20464Q343%20527%20309%20573T212%20619Q179%20619%20154%20602T119%20569T109%20550Q109%20549%20114%20549Q132%20549%20151%20535T170%20489Q170%20464%20154%20447T109%20429Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-6B%22%20d%3D%22M121%20647Q121%20657%20125%20670T137%20683Q138%20683%20209%20688T282%20694Q294%20694%20294%20686Q294%20679%20244%20477Q194%20279%20194%20272Q213%20282%20223%20291Q247%20309%20292%20354T362%20415Q402%20442%20438%20442Q468%20442%20485%20423T503%20369Q503%20344%20496%20327T477%20302T456%20291T438%20288Q418%20288%20406%20299T394%20328Q394%20353%20410%20369T442%20390L458%20393Q446%20405%20434%20405H430Q398%20402%20367%20380T294%20316T228%20255Q230%20254%20243%20252T267%20246T293%20238T320%20224T342%20206T359%20180T365%20147Q365%20130%20360%20106T354%2066Q354%2026%20381%2026Q429%2026%20459%20145Q461%20153%20479%20153H483Q499%20153%20499%20144Q499%20139%20496%20130Q455%20-11%20378%20-11Q333%20-11%20305%2015T277%2090Q277%20108%20280%20121T283%20145Q283%20167%20269%20183T234%20206T200%20217T182%20220H180Q168%20178%20159%20139T145%2081T136%2044T129%2020T122%207T111%20-2Q98%20-11%2083%20-11Q66%20-11%2057%20-1T48%2016Q48%2026%2085%20176T158%20471L195%20616Q196%20629%20188%20632T149%20637H144Q134%20637%20131%20637T124%20640T121%20647Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-33%22%20d%3D%22M127%20463Q100%20463%2085%20480T69%20524Q69%20579%20117%20622T233%20665Q268%20665%20277%20664Q351%20652%20390%20611T430%20522Q430%20470%20396%20421T302%20350L299%20348Q299%20347%20308%20345T337%20336T375%20315Q457%20262%20457%20175Q457%2096%20395%2037T238%20-22Q158%20-22%20100%2021T42%20130Q42%20158%2060%20175T105%20193Q133%20193%20151%20175T169%20130Q169%20119%20166%20110T159%2094T148%2082T136%2074T126%2070T118%2067L114%2066Q165%2021%20238%2021Q293%2021%20321%2074Q338%20107%20338%20175V195Q338%20290%20274%20322Q259%20328%20213%20329L171%20330L168%20332Q166%20335%20166%20348Q166%20366%20174%20366Q202%20366%20232%20371Q266%20376%20294%20413T322%20525V533Q322%20590%20287%20612Q265%20626%20240%20626Q208%20626%20181%20615T143%20592T132%20580H135Q138%20579%20143%20578T153%20573T165%20566T175%20555T183%20540T186%20520Q186%20498%20172%20481T127%20463Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-5D%22%20d%3D%22M22%20710V750H159V-250H22V-210H119V710H22Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJSZ4-23A1%22%20d%3D%22M319%20-645V1154H666V1070H403V-645H319Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJSZ4-23A3%22%20d%3D%22M319%20-644V1155H403V-560H666V-644H319Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJSZ4-23A2%22%20d%3D%22M319%200V602H403V0H319Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJSZ4-23A4%22%20d%3D%22M0%201070V1154H347V-645H263V1070H0Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJSZ4-23A6%22%20d%3D%22M263%20-560V1155H347V-644H0V-560H263Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJSZ4-23A5%22%20d%3D%22M263%200V602H347V0H263Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2212%22%20d%3D%22M84%20237T84%20250T98%20270H679Q694%20262%20694%20250T679%20230H98Q84%20237%2084%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2B%22%20d%3D%22M56%20237T56%20250T70%20270H369V420L370%20570Q380%20583%20389%20583Q402%20583%20409%20568V270H707Q722%20262%20722%20250T707%20230H409V-68Q401%20-82%20391%20-82H389H387Q375%20-82%20369%20-68V230H70Q56%20237%2056%20250Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-70%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-20D7%22%20x%3D%22570%22%20y%3D%2236%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%22848%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(1904%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-20D7%22%20x%3D%22505%22%20y%3D%2236%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-D7%22%20x%3D%222632%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(3633%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-20D7%22%20x%3D%22676%22%20y%3D%2236%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%224627%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(5684%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(0%2C2152)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A1%22%20x%3D%220%22%20y%3D%22-1155%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-2053.4983443708607)%20scale(1%2C0.5016556291390728)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A2%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A3%22%20x%3D%220%22%20y%3D%22-3160%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(834%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%2288%22%20y%3D%221352%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-6A%22%20x%3D%2254%22%20y%3D%22-48%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-6B%22%20x%3D%220%22%20y%3D%22-1453%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1511%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(0%2C1352)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(0%2C-48)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(0%2C-1453)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(3450%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(0%2C1352)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(0%2C-48)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(0%2C-1453)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(5622%2C2152)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A4%22%20x%3D%220%22%20y%3D%22-1155%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-2053.4983443708607)%20scale(1%2C0.5016556291390728)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A5%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A6%22%20x%3D%220%22%20y%3D%22-3160%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%2212251%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%2213308%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2213653%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(14043%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(14982%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2216375%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(17375%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(18315%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2219485%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2220097%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-6A%22%20x%3D%2221098%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2221510%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(21900%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(22839%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2224232%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(25232%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(26172%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2227342%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2227954%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-6B%22%20x%3D%2228955%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2229476%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(29866%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(30805%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2232198%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(33198%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%22686%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(34138%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-77%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221013%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2235308%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%5Cvec%7Bp%7D%20%3D%20%5Cvec%7Bv%7D%20%5Ctimes%20%5Cvec%7Bw%7D%20%3D%0A%5Cbegin%7Bbmatrix%7Di%26v_1%26w_1%5C%5Cj%26v_2%26w_2%5C%5Ck%26v_3%26w_3%5C%5C%5Cend%7Bbmatrix%7D%20%3D%20%0Ai%28v_2%20w_3%20-%20v_3%20w_2%29%20-%0Aj%28v_1%20w_3%20-%20v_3%20w_1%29%20%2B%0Ak%28v_1%20w_2%20-%20v_2%20w_1%29&id=u2UWk)
but why???下一集将解决i、j、k作为矩阵元所表达的含义和与几何直观。
八 通过线性变换深入理解叉积
8.3 叉积的几何结论
事实上,叉积获得的第三个向量长度上等于前两个向量组成的平行四边形面积, 方向上垂直于这个平行四边形并满足右手定则。
8.4 几何特征的推导过程
对偶性快速回顾
当存在多维空间到数轴的线性变换时,它都与空间中的唯一向量对应。而应用线性变换和与这个向量点乘等价。数值上,这是因为这一类线性变换可以用一个只有一行的矩阵描述,而矩阵转置在计算上与另一个向量点乘相同。这个有矩阵转置的向量就是对偶向量。
根据和定义一个三维到一维的线性变换
来!
找到它的对偶向量
来!
证明这个对偶向量就是v和w的叉积
这个思路我确实没懂,所以还是打算放一个bv号在这里(p12),晚上回家再看看也无所谓。
九 基变换
基变换实际讲述了在坐标系之间对单个向量的描述进行相互转化,感觉本质上就是中译英、英译中的差别。用到的基础方法仍然是矩阵乘法,只不过要注意转化词典的问题。
9.1 英译中
有一对基,若在此坐标系中有向量,那么在2d空间中存在的相同的向量在平面直角坐标系中,其向量是 本质上,v向量是这两对基为标准的向量,M矩阵是以我们的语言描述的对应变换,因此要将v向量转换为我们的语言,将之与M词典做矩阵乘法即可。
9.2中译英
我们视角下(平面直角坐标系)的某个向量,如果想看看另一个视角下对这个向量的描述,则需要乘对应矩阵的逆。
十 特征值与特征向量
10.1 概念
10.2 应用:特征向量变换基
求解矩阵的多次方。
咕咕咕……