你已经了解了如何定义神经网络,计算损失值和网络里权重的更新。

    现在你也许会想应该怎么处理数据?

    通常来说,当你处理图像,文本,语音或者视频数据时,你可以使用标准 python 包将数据加载成 numpy 数组格式,然后将这个数组转换成 torch.*Tensor

    • 对于图像,可以用 Pillow,OpenCV
    • 对于语音,可以用 scipy,librosa
    • 对于文本,可以直接用 Python 或 Cython 基础数据加载模块,或者用 NLTK 和 SpaCy
    特别是对于视觉,我们已经创建了一个叫做 totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoader。

    这提供了极大的便利,并且避免了编写“样板代码”。

    对于本教程,我们将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为33232,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

    现在你也许会想应该怎么处理数据? - 图1

    训练一个图像分类器

    我们将按次序的做如下几步:

    1. 使用torchvision加载并且归一化CIFAR10的训练和测试数据集
    2. 定义一个卷积神经网络
    3. 定义一个损失函数
    4. 在训练样本数据上训练网络
    5. 在测试样本数据上测试网络
    加载并归一化 CIFAR10 使用 torchvision ,用它来加载 CIFAR10 数据非常简单。

    1. import torch
    2. import torchvision
    3. import torchvision.transforms as transforms
    torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。

    1. transform = transforms.Compose(
    2. [transforms.ToTensor(),
    3. transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    4. trainset = torchvision.datasets.CIFAR10(root=‘./data, train=True,

    5. download=True, transform=transform)

    6. trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,

    7. shuffle=True, num_workers=2)

    8. testset = torchvision.datasets.CIFAR10(root=‘./data, train=False,

    9. download=True, transform=transform)

    10. testloader = torch.utils.data.DataLoader(testset, batch_size=4,

    11. shuffle=False, num_workers=2)

    12. classes = (plane, car, bird, cat,

    13. deer, dog, frog, horse, ship, truck)

    输出:

    1. Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
    2. Files already downloaded and verified
    让我们来展示其中的一些训练图片。

    1. import matplotlib.pyplot as plt
    2. import numpy as np

    3. # functions to show an image

    4. def imshow(img):

    5. img = img / 2 + 0.5 # unnormalize

    6. npimg = img.numpy()

    7. plt.imshow(np.transpose(npimg, (1, 2, 0)))

    8. plt.show()

    9. # get some random training images

    10. dataiter = iter(trainloader)

    11. images, labels = dataiter.next()

    12. # show images

    13. imshow(torchvision.utils.make_grid(images))

    14. # print labels

    15. print( .join(%5s % classes[labels[j]] for j in range(4)))

     

    现在你也许会想应该怎么处理数据? - 图2

    输出:

    1. cat plane ship frog

    定义一个卷积神经网络 在这之前先 从神经网络章节 复制神经网络,并修改它为3通道的图片(在此之前它被定义为1通道)

    1. import torch.nn as nn
    2. import torch.nn.functional as F

    3. class Net(nn.Module):

    4. def init(self):

    5. super(Net, self).init()

    6. self.conv1 = nn.Conv2d(3, 6, 5)

    7. self.pool = nn.MaxPool2d(2, 2)

    8. self.conv2 = nn.Conv2d(6, 16, 5)

    9. self.fc1 = nn.Linear(16 5 5, 120)

    10. self.fc2 = nn.Linear(120, 84)

    11. self.fc3 = nn.Linear(84, 10)

    12. <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
    13.     <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
    14.     <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
    15.     <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">16</span> <span class="o">*</span> <span class="mi">5</span> <span class="o">*</span> <span class="mi">5</span><span class="p">)</span>
    16.     <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    17.     <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
    18.     <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
    19.     <span class="k">return</span> <span class="n">x</span>
    20. net = Net()

     

    定义一个损失函数和优化器 让我们使用分类交叉熵Cross-Entropy 作损失函数,动量SGD做优化器。

    1. import torch.optim as optim

    2. criterion = nn.CrossEntropyLoss()

    3. optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

    训练网络 这里事情开始变得有趣,我们只需要在数据迭代器上循环传给网络和优化器 输入就可以。

    1. for epoch in range(2): # loop over the dataset multiple times

    2. <span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
    3. <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainloader</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span>
    4.     <span class="c1"># get the inputs</span>
    5.     <span class="n">inputs</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span>
    6.     <span class="c1"># zero the parameter gradients</span>
    7.     <span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
    8.     <span class="c1"># forward + backward + optimize</span>
    9.     <span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
    10.     <span class="n">loss</span> <span class="o">=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
    11.     <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
    12.     <span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
    13.     <span class="c1"># print statistics</span>
    14.     <span class="n">running_loss</span> <span class="o">+=</span> <span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
    15.     <span class="k">if</span> <span class="n">i</span> <span class="o">%</span> <span class="mi">2000</span> <span class="o">==</span> <span class="mi">1999</span><span class="p">:</span>    <span class="c1"># print every 2000 mini-batches</span>
    16.         <span class="k">print</span><span class="p">(</span><span class="s1">'[</span><span class="si">%d</span><span class="s1">, </span><span class="si">%5d</span><span class="s1">] loss: </span><span class="si">%.3f</span><span class="s1">'</span> <span class="o">%</span>
    17.               <span class="p">(</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">running_loss</span> <span class="o">/</span> <span class="mi">2000</span><span class="p">))</span>
    18.         <span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
    19. print(Finished Training)

    输出:

    1. [1, 2000] loss: 2.187
    2. [1, 4000] loss: 1.852
    3. [1, 6000] loss: 1.672
    4. [1, 8000] loss: 1.566
    5. [1, 10000] loss: 1.490
    6. [1, 12000] loss: 1.461
    7. [2, 2000] loss: 1.389
    8. [2, 4000] loss: 1.364
    9. [2, 6000] loss: 1.343
    10. [2, 8000] loss: 1.318
    11. [2, 10000] loss: 1.282
    12. [2, 12000] loss: 1.286
    13. Finished Training
    在测试集上测试网络 我们已经通过训练数据集对网络进行了2次训练,但是我们需要检查网络是否已经学到了东西。

    我们将用神经网络的输出作为预测的类标来检查网络的预测性能,用样本的真实类标来校对。如果预测是正确的,我们将样本添加到正确预测的列表里。

    好的,第一步,让我们从测试集中显示一张图像来熟悉它。现在你也许会想应该怎么处理数据? - 图3

    输出:

    1. GroundTruth: cat ship ship plane
    现在让我们看看 神经网络认为这些样本应该预测成什么:

    1. outputs = net(images)
    输出是预测与十个类的近似程度,与某一个类的近似程度越高,网络就越认为图像是属于这一类别。所以让我们打印其中最相似类别类标:

    1. _, predicted = torch.max(outputs, 1)

    2. print(Predicted: , .join(%5s % classes[predicted[j]]

    3. for j in range(4)))

    输出:

    1. Predicted: cat ship car ship
    结果看起开非常好,让我们看看网络在整个数据集上的表现。

    1. correct = 0
    2. total = 0
    3. with torch.nograd():
    4. for data in testloader:
    5. images, labels = data
    6. outputs = net(images)
    7. , predicted = torch.max(outputs.data, 1)
    8. total += labels.size(0)
    9. correct += (predicted == labels).sum().item()

    10. print(Accuracy of the network on the 10000 test images: %d %% % (

    11. 100 * correct / total))

    输出:

    1. Accuracy of the network on the 10000 test images: 54 %
    这看起来比随机预测要好,随机预测的准确率为10%(随机预测出为10类中的哪一类)。看来网络学到了东西。

    1. classcorrect = list(0. for i in range(10))
    2. class_total = list(0. for i in range(10))
    3. with torch.no_grad():
    4. for data in testloader:
    5. images, labels = data
    6. outputs = net(images)
    7. , predicted = torch.max(outputs, 1)
    8. c = (predicted == labels).squeeze()
    9. for i in range(4):
    10. label = labels[i]
    11. class_correct[label] += c[i].item()
    12. class_total[label] += 1

    13. for i in range(10):

    14. print(Accuracy of %5s : %2d %% % (

    15. classes[i], 100 * class_correct[i] / class_total[i]))

    输出:

    1. Accuracy of plane : 57 %
    2. Accuracy of car : 73 %
    3. Accuracy of bird : 49 %
    4. Accuracy of cat : 54 %
    5. Accuracy of deer : 18 %
    6. Accuracy of dog : 20 %
    7. Accuracy of frog : 58 %
    8. Accuracy of horse : 74 %
    9. Accuracy of ship : 70 %
    10. Accuracy of truck : 66 %
    所以接下来呢?

    我们怎么在GPU上跑这些神经网络?

    在GPU上训练 就像你怎么把一个张量转移到GPU上一样,你要将神经网络转到GPU上。 如果CUDA可以用,让我们首先定义下我们的设备为第一个可见的cuda设备。

    1. device = torch.device(cuda:0 if torch.cuda.is_available() else cpu)

    2. # Assume that we are on a CUDA machine, then this should print a CUDA device:

    3. print(device)

    输出:

    1. cuda:0
    本节剩余部分都会假定设备就是台CUDA设备。

    接着这些方法会递归地遍历所有模块,并将它们的参数和缓冲器转换为CUDA张量。

    1. net.to(device)
    记住你也必须在每一个步骤向GPU发送输入和目标:

    1. inputs, labels = inputs.to(device), labels.to(device)
    为什么没有注意到与CPU相比巨大的加速?因为你的网络非常小。

    练习:尝试增加你的网络宽度(首个 nn.Conv2d 参数设定为 2,第二个nn.Conv2d参数设定为1—它们需要有相同的个数),看看会得到怎么的速度提升。

    目标:

    • 深度理解了PyTorch的张量和神经网络
    • 训练了一个小的神经网络来分类图像
    在多个GPU上训练

    如果你想要来看到大规模加速,使用你的所有GPU,请查看:数据并行性(https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html)。PyTorch 60 分钟入门教程:数据并行处理

    http://pytorchchina.com/2018/12/11/optional-data-parallelism/

    下载 Python 源代码:

    cifar10_tutorial.py

    下载 Jupyter 源代码:

    cifar10_tutorial.ipynb