Java多线程实现的方式有四种
1.继承Thread类,重写run方法
2.实现Runnable接口,重写run方法,实现Runnable接口的实现类的实例对象作为Thread构造函数的target
3.通过Callable和FutureTask创建线程
4.通过线程池创建线程
前面两种可以归结为一类:无返回值,原因很简单,通过重写run方法,run方式的返回值是void,所以没有办法返回结果
后面两种可以归结成一类:有返回值,通过Callable接口,就要实现call方法,这个方法的返回值是Object,所以返回的结果可以放在Object对象中
方式1:继承Thread类的线程实现方式如下:
public class ThreadDemo01 extends Thread{
public ThreadDemo01(){
//编写子类的构造方法,可缺省
}
public void run(){
//编写自己的线程代码
System.out.println(Thread.currentThread().getName());
}
public static void main(String[] args){
ThreadDemo01 threadDemo01 = new ThreadDemo01();
threadDemo01.setName("我是自定义的线程1");
threadDemo01.start();
System.out.println(Thread.currentThread().toString());
}
}
程序结果:
Thread[main,5,main]
我是自定义的线程1
方式2:通过实现Runnable接口,实现run方法
接口的实现类的实例作为Thread的target作为参数传入带参的Thread构造函数,通过调用start()方法启动线程
public class ThreadDemo02 {
public static void main(String[] args){
System.out.println(Thread.currentThread().getName());
Thread t1 = new Thread(new MyThread());
t1.start();
}
}
class MyThread implements Runnable{
@Override
public void run() {
// TODO Auto-generated method stub
System.out.println(Thread.currentThread().getName()+"-->我是通过实现接口的线程实现方式!");
}
}
程序运行结果:
main
Thread-0–>我是通过实现接口的线程实现方式!
方式3:通过Callable和FutureTask创建线程
- a:创建Callable接口的实现类 ,并实现Call方法
- b:创建Callable实现类的实现,使用FutureTask类包装Callable对象,该FutureTask对象封装了Callable对象的Call方法的返回值
- c:使用FutureTask对象作为Thread对象的target创建并启动线程
- d:调用FutureTask对象的get()来获取子线程执行结束的返回值
public class ThreadDemo03 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Callable<Object> oneCallable = new Tickets<Object>();
FutureTask<Object> oneTask = new FutureTask<Object>(oneCallable);
Thread t = new Thread(oneTask);
System.out.println(Thread.currentThread().getName());
t.start();
}
}
class Tickets<Object> implements Callable<Object>{
//重写call方法
@Override
public Object call() throws Exception {
// TODO Auto-generated method stub
System.out.println(Thread.currentThread().getName()+"-->我是通过实现Callable接口通过FutureTask包装器来实现的线程");
return null;
}
}
程序运行结果:
main
Thread-0–>我是通过实现Callable接口通过FutureTask包装器来实现的线程
方式4:通过线程池创建线程
public class ThreadDemo05{
private static int POOL_NUM = 10; //线程池数量
/**
* @param args
* @throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
// TODO Auto-generated method stub
ExecutorService executorService = Executors.newFixedThreadPool(5);
for(int i = 0; i<POOL_NUM; i++)
{
RunnableThread thread = new RunnableThread();
//Thread.sleep(1000);
executorService.execute(thread);
}
//关闭线程池
executorService.shutdown();
}
}
class RunnableThread implements Runnable
{
@Override
public void run()
{
System.out.println("通过线程池方式创建的线程:" + Thread.currentThread().getName() + " ");
}
}
程序运行结果:
通过线程池方式创建的线程:pool-1-thread-3
通过线程池方式创建的线程:pool-1-thread-4
通过线程池方式创建的线程:pool-1-thread-1
通过线程池方式创建的线程:pool-1-thread-5
通过线程池方式创建的线程:pool-1-thread-2
通过线程池方式创建的线程:pool-1-thread-5
通过线程池方式创建的线程:pool-1-thread-1
通过线程池方式创建的线程:pool-1-thread-4
通过线程池方式创建的线程:pool-1-thread-3
通过线程池方式创建的线程:pool-1-thread-2
ExecutorService、Callable都是属于Executor框架。返回结果的线程是在JDK1.5中引入的新特征,还有Future接口也是属于这个框架,有了这种特征得到返回值就很方便了。
通过分析可以知道,他同样也是实现了Callable接口,实现了Call方法,所以有返回值。这也就是正好符合了前面所说的两种分类
执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了。get方法是阻塞的,即:线程无返回结果,get方法会一直等待。
再介绍Executors类:提供了一系列工厂方法用于创建线程池,返回的线程池都实现了ExecutorService接口。
- public static ExecutorService newFixedThreadPool(int nThreads)
创建固定数目线程的线程池。
- public static ExecutorService newCachedThreadPool()
创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的, 则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。
- public static ExecutorService newSingleThreadExecutor()
创建一个单线程化的Executor。
- public static ScheduledExecutorService newScheduledThreadPool(int
corePoolSize)
创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。
- ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果Executor后台线程池还没有完成Callable的计算,这调用返回Future对象的get()方法,会阻塞直到计算完成
————————————————
版权声明:本文为CSDN博主「504的小菜鸟」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/u011480603/article/details/75332435/