1.one sample t-test
即一组数的平均值和H0比较,在函数里即mu,若小于0.05即显著
unique()
R语言中的 unique() 函数用于从向量、 DataFrame 或数组中删除重复的元素/行。
unique(Raw_A['time_points'])
time_points 1 M 2 D-2d 3 D-4d 4 D-6d 5 D-7d
for()
可进行疯狂套娃
example:
for (i in c(1,2,3)){print (i+1)}
[1] 2 [1] 3 [1] 4
数据处理:
for( tp in unique(Raw_A$time_points)){
print(Raw_A[Raw_A$time_points==tp,]
)}
time time_points variable value 1 1 M gapdh 1 6 2 M gapdh 1 11 3 M gapdh 1 16 4 M gapdh 1 21 1 M rpl30 1 26 2 M rpl30 1 31 3 M rpl30 1 36 4 M rpl30 1 41 1 M b-actin 1 46 2 M b-actin 1 51 3 M b-actin 1 56 4 M b-actin 1 61 1 M sat1 1 66 2 M sat1 1 71 3 M sat1 1 76 4 M sat1 1 81 1 M sat4 1 86 2 M sat4 1 91 3 M sat4 1 96 4 M sat4 1 101 1 M sat13-21 1 106 2 M sat13-21 1 111 3 M sat13-21 1 116 4 M sat13-21 1
for( tp in unique(Raw_A$time_points))
if(tp != "M") {
print(Raw_A[Raw_A$time_points==tp,])
}
time time_points variable value 2 1 D-2d gapdh 8.95307952 7 2 D-2d gapdh 652.12501241 12 3 D-2d gapdh 0.79811012 17 4 D-2d gapdh 0.05478458 22 1 D-2d rpl30 0.75467584 27 2 D-2d rpl30 2.65675309 32 3 D-2d rpl30 1.00257342 37 4 D-2d rpl30 0.50980149 42 1 D-2d b-actin 132.22543639 47 2 D-2d b-actin 0.11692907 52 3 D-2d b-actin 8.02826816 57 4 D-2d b-actin 10.59785717 62 1 D-2d sat1 49.31884129 67 2 D-2d sat1 91.50323759 72 3 D-2d sat1 14.67014446 77 4 D-2d sat1 3.50313638 82 1 D-2d sat4 11.52409058 87 2 D-2d sat4 9.31263020 92 3 D-2d sat4 9.41846993 97 4 D-2d sat4 5.90411901 102 1 D-2d sat13-21 52.56483215 107 2 D-2d sat13-21 141.08128066 112 3 D-2d sat13-21 29.84777307 117 4 D-2d sat13-21 16.81472601 122 1 D-2d D18Z1 77.40971180 127 2 D-2d D18Z1 105.01452773 132 3 D-2d D18Z1 137.36544339 137 4 D-2d D18Z1 10.26395067 142 1 D-2d D19Z5 0.57631647 147 2 D-2d D19Z5 1.03505636 152 3 D-2d D19Z5 1.47528060 157 4 D-2d D19Z5 0.21805312 162 1 D-2d D21Z1 59.93753629 167 2 D-2d D21Z1 17.85014164 172 3 D-2d D21Z1 37.98576398 177 4 D-2d D21Z1 9.15268350
forfor ( tp in unique(Raw_A$time_points))
if(tp != "M"){
TMP = Raw_A[Raw_A$time_points==tp,]
for(pm in unique(Raw_A$variable)){
print(t.test(TMP$value[TMP$variable==pm],mu=1))
}
}
One Sample t-test data: TMP$value[TMP$variable == pm] t = 1.0139, df = 3, p-value = 0.3853 alternative hypothesis: true mean is not equal to 1 95 percent confidence interval: -350.7947 681.7602 sample estimates: mean of x 165.4827 One Sample t-test data: TMP$value[TMP$variable == pm] t = 0.47541, df = 3, p-value = 0.667 alternative hypothesis: true mean is not equal to 1 95 percent confidence interval: -0.3150659 2.7769678 sample estimates: mean of x 1.230951
for( tp in unique(Raw_A$time_points))
if(tp != "M"){
TMP = Raw_A[Raw_A$time_points==tp,]
for(pm in unique(Raw_A$variable)){
print(paste(tp, pm))
print(t.test(TMP$value[TMP$variable==pm], mu = 1))
}
}
[1] "D-2d gapdh" One Sample t-test data: TMP$value[TMP$variable == pm] t = 1.0139, df = 3, p-value = 0.3853 alternative hypothesis: true mean is not equal to 1 95 percent confidence interval: -350.7947 681.7602 sample estimates: mean of x 165.4827 [1] "D-2d rpl30" One Sample t-test data: TMP$value[TMP$variable == pm] t = 0.47541, df = 3, p-value = 0.667 alternative hypothesis: true mean is not equal to 1 95 percent confidence interval: -0.3150659 2.7769678 sample estimates: mean of x 1.230951
for( tp in unique(Raw_A$time_points))
if(tp != "M"){
TMP = Raw_A[Raw_A$time_points==tp,]
for(pm in unique(Raw_A$variable)){
print(paste(tp, pm))
P = t.test(TMP$value[TMP$variable==pm], mu = 1)
print( P$p.value)
}
}
1] "D-2d gapdh" [1] 0.3852915 [1] "D-2d rpl30" [1] 0.6669668 [1] "D-2d b-actin" [1] 0.3286827 [1] "D-2d sat1" [1] 0.1455204 [1] "D-2d sat4" [1] 0.006199377 [1] "D-2d sat13-21" [1] 0.1253198 [1] "D-2d D18Z1" [1] 0.05690523 [1] "D-2d D19Z5" [1] 0.5701494 [1] "D-2d D21Z1" [1] 0.07556487
P_tb=data.frame()
for( tp in unique(Raw_A$time_points))
if(tp != "M"){
TMP = Raw_A[Raw_A$time_points==tp,]
for(pm in unique(Raw_A$variable)){
print(paste(tp, pm))
P = t.test(TMP$value[TMP$variable==pm], mu = 1)
print( P$p.value)
ttt=data.frame(tp=tp,pm=pm,pv=P$p.value)
P_tb=rbind(P_tb,ttt)
}
}
1] "D-2d gapdh" [1] 0.3852915 [1] "D-2d rpl30" [1] 0.6669668 [1] "D-2d b-actin" [1] 0.3286827 [1] "D-2d sat1" [1] 0.1455204 [1] "D-2d sat4" [1] 0.006199377 [1] "D-2d sat13-21" [1] 0.1253198 [1] "D-2d D18Z1" [1] 0.05690523 [1] "D-2d D19Z5" [1] 0.5701494 [1] "D-2d D21Z1" [1] 0.07556487 [1] "D-4d gapdh"
P_tb
tp pm pv
1 D-2d gapdh 3.852915e-01
2 D-2d rpl30 6.669668e-01
3 D-2d b-actin 3.286827e-01
4 D-2d sat1 1.455204e-01
5 D-2d sat4 6.199377e-03
6 D-2d sat13-21 1.253198e-01
7 D-2d D18Z1 5.690523e-02
8 D-2d D19Z5 5.701494e-01
9 D-2d D21Z1 7.556487e-02
10 D-4d gapdh 4.839569e-01
11 D-4d rpl30 5.026747e-01
12 D-4d b-actin 2.886992e-12
13 D-4d sat1 2.694437e-01
14 D-4d sat4 1.113323e-03
15 D-4d sat13-21 6.717040e-02
16 D-4d D18Z1 8.269724e-02
17 D-4d D19Z5 3.917222e-01
18 D-4d D21Z1 1.556035e-01
19 D-6d gapdh 4.010020e-01
20 D-6d rpl30 9.522487e-01
21 D-6d b-actin 4.819200e-12
22 D-6d sat1 2.016093e-01
23 D-6d sat4 7.093849e-02
24 D-6d sat13-21 1.726421e-01
P_tb[P_tb$pv<=0.05,]
tp pm pv 5 D-2d sat4 6.199377e-03 12 D-4d b-actin 2.886992e-12 14 D-4d sat4 1.113323e-03 21 D-6d b-actin 4.819200e-12 30 D-7d b-actin 8.740433e-03 31 D-7d sat1 4.276131e-03 32 D-7d sat4 3.281559e-06 35 D-7d D19Z5 4.699162e-02 41 D-2d sat4 6.199377e-03 48 D-4d b-actin 2.886992e-12 50 D-4d sat4 1.113323e-03 57 D-6d b-actin 4.819200e-12 66 D-7d b-actin 8.740433e-03 67 D-7d sat1 4.276131e-03 68 D-7d sat4 3.281559e-06 71 D-7d D19Z5 4.699162e-02