第十章 偏微分方程数值解法
§3 抛物型方程的差分解法
抛物方程的最简单的是一维热传导方程:
(10.35)
它的定解条件主要有以下两类:
(ⅰ)初值问题:(或称柯西Caucy问题)
(10.36)
(ⅱ)边值问题(或称混合问题)
(10.37)
求(10.35)满足(ⅰ)或(ⅱ)的解.
(1) 矩形网格
用两组平行直线族x = jh,t = kt (j = 0, ±1, …, k = 0, ±1, …)构成的矩形网覆盖了整个x t平面,网格点(x, t)称为节点,简记为(j, k),h、t 为常数,分别称为空间长及时间步长,(或h称沿x方向的步长,t 称为沿t方向的步长)。
在t = 0上的节点称为边界节点,其余所有属于{-¥<_x_ <+¥, 0< _t __£ T_} 内的节点称为**内部节点**。
(2)古典差分格式:
于平面区域上考虑热传导方程
于节点()处微商与差商之间有如下近似关系:
利用上述表达式得到u在(
)处的关系式
(10.38)
当u满足方程式(10.35)时,由(10.38)看出(10.35)在()点可以用下列方程近似地代替:
(10.39)
式中视为
的近似值。
差分方程(10.39)称为解热传导方程(10.35)的古典显格式,它所用到的节点图式如下图:
![]() |
|||||
![]() |
![]() |
![]() |
图 10.5
将(10.39)写成便于计算的形式
(10.40)
称为网比,利用(10.40)及初边值条件(10.37),在网格上的值
(10.41)
即可依次算出k = 1, 2, …,各层上的值。
从(10.38)若u (x, t)为方程式(10.35)的解,则差分方程(10.39)的截断误差阶为。这个误差的大小将直接影响差分方程解的误差
为了提高截断误差的阶,可以得用中心差商:
仿古典显格式的讨论,得到如下差分格式:
(10.42)
它称为Richardson格式,其节点图为:
![]() |
|||||
![]() |
![]() |
![]() |
<br />
图 10.6
截断误差阶为,较古典显格式高。
将(10.42)式改写成适于计算的形式:
(10.43)
为网比,由于在(10.43)中出现了三层网格上的值,故需要先求得第一层网格上的值
,才能逐层计算。
如果利用向后差商
则导出另一差分格式
(10.44)
或者
(10.45)
它称为古典隐格式,其节点图为:
![]() |
![]() |
![]() |
|||
![]() |
图 10.7
截断误差阶为,与古典显格式相同。
我们已经构造出三种差分格式,还可以造出其它格式,它们从形式上看都是可以计算的。那么,这些格式是否可用?哪一种格式更好些?为此必须回答下述问题:
(ⅰ)当步长无限缩小时,差分方程的解是否逼近于微分方程的解?
(ⅱ)计算过程中产生的误差,在以后的计算中是无限增加?还是可以控制?(稳定性)
在适当条件下,从稳定性可以推出收敛性,因此,稳定性问题是研究抛物型差分方程的一个中心课题。
作为例子,现在考查Richardson格式的稳定性。
用表示计算
所产生的误差,如果右端
无误差存在,则
满足
取r = 1/2,则
(10.46)
假设k – 1层之前无误差存在,即,而在第k层产生了误差,
,这一层其它点也无误差,而且在计算过程中不再产生新的误差,利用(10.46)式算出误差e 的传播如下表:
表10.5 r = 1/2 时,Richardson格式的误差传播
J k |
_J_0 - 4 | _J_0 - 3 | _J_0 - 2 | _J_0 - 1 | _J_0 | _J_0 + 1 | _J_0 + 2 | _J_0 + 3 | _J_0 + 4 |
---|---|---|---|---|---|---|---|---|---|
k | e | ||||||||
k + 1 | e | -2e | e | ||||||
k + 2 | e | -4e | 7e | -4e | e | ||||
k + 3 | e | -6e | 17e | -24e | 17e | -6e | e | ||
k + 4 | e | -8e | 31e | -68e | 89e | -68e | 31e | -8e | e |
k + 5 | -10e | 49e | -144e | 273e | -388e | 273e | -144e | 49e | -10e |
k + 6 | 71e | -260e | 641e | -1096e | 1311e | -1096e | 641e | -260e | 71e |
<br />从表中看出,误差在迅速增加,因此,这种差分格式是不能使用的。<br /> 如果选用_r_ = 1/2时的古典显格式,此时误差方程为:<br /> <br /> _r_ = 1/2时  (10.47)<br />此时,误差将逐渐衰减,计算结果列入表10.6。
J k |
_J_0 - 4 | _J_0 - 3 | _J_0 - 2 | _J_0 - 1 | _J_0 | _J_0 + 1 | _J_0 + 2 | _J_0 + 3 | _J_0 + 4 |
---|---|---|---|---|---|---|---|---|---|
k | e | ||||||||
k + 1 | 0.5e | 0 | 0.5e | ||||||
k + 2 | 0.25e | 0 | 0.5e | 0 | 0.25e | ||||
k + 3 | 0.125e | 0 | 0.375e | 0 | 0.375e | 0 | 0.125e | ||
k + 4 | 0.0625e | 0 | 0.25e | 0 | 0.375e | 0e | 0.25e | 0 | 0.0625e |
对于古典显格式,若选用r = 1,则误差方程为
误差传播图如表10.7:
J k |
_J_0 - 5 | _J_0 - 4 | _J_0 - 3 | _J_0 - 2 | _J_0 - 1 | _J_0 | _J_0 + 1 | _J_0 + 2 | _J_0 + 3 | _J_0 + 4 | _J_0 + 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
k | e | ||||||||||
k + 1 | e | -e | e | ||||||||
k + 2 | e | -e | 3e | -2e | e | ||||||
k + 3 | e | -3e | 6e | -7e | 6e | -3e | e | ||||
k + 4 | e | -4e | 10e | -16e | 19e | -16e | 10e | -4e | e | ||
k + 5 | e | -5e | 15e | -30e | 45e | -51e | 45e | -30e | 15e | -5e | e |
经过分析看出,稳定性问题不仅与差分格式有关,而且还与网比有关。如果适当地选取时间步长和空间步长,才能使格式稳定,这种格式的稳定是有条件的,此种稳定称为条件稳定;若格式对任何步长之比都稳定,此种稳定称为无条件稳定或绝对稳定;若格式对任何网比都不稳定,就称为完全不稳定或绝对不稳定。<br /> **稳定性的概念:**差分格式关于初始值稳定的实际含义是,如果其解在某一层存在误差,则由它引起的以后各层上的误差不超过原始误差的M倍,(M为与t无关的长数),因此,只要初始误差足够小,以后各层的误差也足够小。<br /> 下面我们给出一个讨论稳定性的常用富里埃(Fourier)方法,简称富氏方法,我们首先以(10.40)为例,说明富氏方法分析稳定的过程和方法,与(10.40)为相应的误差方程为:<br />  (10.48) <br /> 我们把初始误差表示成一个简谐波的形式:<br />  (10.49)<br />式中,_n_是频率参数,试定形如<br />  (10.50)<br />的解,这实际上是假定的振幅为_G _,频率为_n_的谐波。<br /> 将(10.50)代入(10.48)得<br /> <br />两边消去共同因子_G e_ 得<br />  (10.51)<br />这是因为。(10.51)是差分方程(10.40)的特征方程,从(10.51)容易容易出<br />  (10.52)<br />这里_G_叫做增长因子(或叫做传播因子),因为从(10.50)可以看到,当时,误差随着_k_作指数增长,当时,则误差不增长。由于初始误差可以表为不同频率的谐波的迭加,并且由于计算中舍入误差的随机性,应该认为所有_n_的频率组成部分都是可能出现的,因此数值稳定条件是:<br /> ,对一切_n_ (10.53)<br /> 从(10.52)看,要<br /> <br /> 对一切_n_都成立,必要充分条件是<br /> 或 (10.54)<br /> 这说明(10.40)是条件稳定的,当时间步长_t_和空间步长_h_满足不不式(10.54)时为稳定,否则不稳定。<br /> 从上面的讨论过程可以看出,用富氏方法讨论稳定性有这样几个主要步骤:(1)首先假定误差是具有谐波形式的;(2)然后代入差分方程的相应误差方程,得到相应的特征方程;(3)第三是求出特征方程的增长因子;(4)最后判定增长因子是否小于等于1,增长因子小于等于1是稳定的,否则是不稳定的,使增长因子小于等于1的条件,就是稳定条件。<br /> 隐格式(10.45)的特征方程是<br /> <br />这时增长因子为<br />  (10.55)<br />无论_t_,_h_如何选取,恒有,因此格式(10.45)是无条件稳定的,或者称绝对稳定。<br /> 李查逊格式(10.43)的特征方程是<br /> <br />_G_有两个根:<br />  (3.22)<br />不论_t_,_h_怎样选取。总有_n_能使,因此李查逊格式是绝对不稳定的,尽管这个格式提高了截断误差阶,但却不能使用。